

SM Transparency Catalog ► TOTO ► Ultramax®

Click navigation to go to live Transparency Report

TOTO_®

Ultramax

MS854114E - Eco Ultramax MS604114CEFG - Ultramax II MS604114CUFG - Ultramax II 1G[®]

the Ultramax HET incorporates thoughtful innovation with simple elegant design and TOTO's dedication to respecting water. The Ultramax HET offers sleek lines, is simple to install, and features performance design that focuses on your comfort. Choose the Eco Ultramax which utilizes TOTO's E-max flushing system or the Universal Height Ultramax II with TOTO's Tornado Flush™ system, available in 1.28gpf or 16 options.

Performance Dashboard

Features & functionality

Wide 3" flush valve is 125% larger than conventional 2" flush valves

Wide 2-1/8" computer designed, fully glazed trapway

Sleek, high profile one-piece toilet

Complete with SoftClose® seat, or upgrade to Washlet®

ADA compliant (Ultramax II and Ultramax II 1G)

Visit TOTO for more product specifications:

Eco Ultramax – MS854114E, MS854114EG Ultramax II – MS604114CEF, MS604114CEFG, MS604114CEFRG

Ultramax II 1G - MS604114CUFG

See ecomedes for water & energy calculations

CSI MasterFormat™ #22 41 13.13 Check spec sheets for these products

Eco Ultramax, Ultramax II, Ultramax II 1G

For spec help call (888) 295-8134

Environmental performance

Improved by:

Lower water use

50% of all electricity from renewable resources Kiln exhaust heat reused to power product dryers Upcycling of post industrial porcelain waste into ceramic floor tile

Certifications, rating systems & disclosures:

WaterSense® certified

CALGreen® compliant

Declare™ label

Contributes to earning credits in LEED®

See LCA results & interpretation

See material health results & interpretation

TOTO PeoplePlanetWater Smart Fact: TOTO donates all unusable, cracked ceramic tiles to Crossville Tile to be recycled and re-used as floor tiles.

SM Transparency Report™+ Material Health Overview™

VERIFICATION

3rd party reviewed

LCA

✓ NSE

v Danast

NSE

Transparency Report

Verified

Material Health Evaluation

Self-declared

Validity: 09/14/18 – 09/14/23 TOT – 09/14/18 – 011 The LCA and Report are independently reviewed and verified to the SM Transparency Report Framework and ISO 14025.

NSF International

P.O Box 130140 789 N.Dixboro Road Ann Arbor, MI 48105, USA www.nsf.org

+1 734 769 8010

The material health evaluation is self-declared and done in accordance with the Manufacturers Guide to Declare.

International Living Future Institute

501 East Madison St. Seattle, WA 98122 www.living-future.org 206 223 2028

TOTO USA

1155 Southern Road Morrow, GA 30260 www.totousa.com

Contact us

Sustainable Minds®

Transparency Report

Download PDF

LCA & material health results & interpretation

Ultramax® MS854114E, MS604114CEFG, & MS604114CUFG

Life cycle assessment

Scope and summary

○ Cradle to gate ○ Cradle to gate with options **②** Cradle to grave

One toilet in an average U.S. residential environment that functions for 20

Functional unit

years. The period of 20 years is an industry accepted average lifespan for residential tanks and their associated components; this is more limited due to changes in consumer preferences and innovations in water usage than the technical lifespan of the product. The vessel is assumed to be replaced at the same time as the tank. The implication is that the LCA model assumes that the application ends at year 20 and that the materials will be treated in an end-of-life scenario.

Default use phase scenario

Data reporting period: 2017

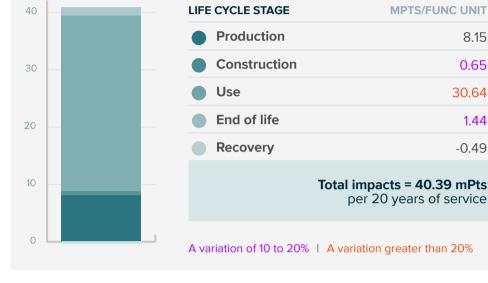
Eco Ultramax MS854114E and Ultramax II MS604114CEFG: 20 years of service in a U.S. household with 1.28 gallon/use and 5.05 flushes/day and 2.67 people resulting in 125,990 gallons.

an average of 1.0 gallon/use and 5.05 flushes/day and 2.67 people resulting in approximately 98,430 gallons. The toilet bowl is assumed to be cleaned weekly, 52 weeks per year, with

Ultramax II 1G MS604114CUFG: 20 years of service in a U.S. household with

Material composition greater than 1% by weight

Cardboard


PART MATERIAL Ceramic Ceramic

10mL of a 1% sodium lauryl sulfate solution.

Packaging

Seat	Polypropylene	4.7%
	Other	1.6%
Total impacts by life c	ycle stages [mPts/func unit]	
40	LIFE CYCLE STAGE	MPTS/FUNC UNIT
	Production	8.15

Construction

LCA results

What's causing the greatest impacts All life cycle stages

The use stage and the production stage are equally important and

dominate the results for all impact categories. The impact of the use stage is mostly due to the embedded energy arising from acquisition, treatment and distribution of the water used during the operation of the product. The production stage has the most significant contributions to fossil fuel depletion (mostly defined by crude oil, hard coal and natural gas extraction activities as well as polypropylene manufacturing), noncarcinogenics (mostly defined by zinc production and processing, the natural gas used at the kiln and the disposal of hard coal ash) and ecotoxicity (mainly caused by electricity production, the disposal of slags and hard coal ash as well as zinc and copper production and processing).

The contributions covered under the construction/installation stage are

mostly associated with the product delivery to the market and the disposal of packaging materials, mainly corrugated cardboard. The recovery stage includes recycling processes and benefits by preventing the need to produce primary materials. Recycling is a relevant factor for some of the impact categories, offsetting a portion of the impacts caused by production. Additionally, the delivery of the product to the construction/installation site as well as the processes for dismantling the product and final waste treatment during the end of life stage are slightly relevant in the majority of the impact categories. **Production stage**

The ceramic parts dominate the material contribution except for

AVG. % WT.

83.6%

10.1%

0.65

30.64

1.44

-0.49

eutrophication and non-carcinogenics. Corrugated board has major contributions to the eutrophication and non-carcinogenics impact categories. The die casting of zinc has a significant contribution to the noncarcinogenic impact category. The injection molding process has a significant contribution to the carcinogenics impact category while the steel parts have a significant contribution to fossil fuel depletion. The remaining parts and processes contribute between 7% and 18% of the overall impacts in the rest of the categories. Sensitivity analysis

The deviations at the production stage are a combination of the variation in

amount of the ceramic component of the two products (10-20% deviation) caused by the differences in the firing yield and production efficiency. Use phase deviations (over 20%) are a result of differences in the product's water consumption and associated operational energy use. The Ultramax II 1G uses 22% less water than the other two Ultramax versions: The Eco Ultramax and Ultramax II. The deviations at the construction/installation and end of life stages are mainly due to the weight difference of the finished product after packaging, which is driven by the difference in the ceramic component weight in the two products. Multi-product weighted average

are indicated in red. A difference greater than 10% is considered significant.

TOTO PeoplePlanetWater... programs improving environmental performance

-0.49 mPts

components'

-2.56E-02

-7.07E-03

-3.03E+00

-2.73E-07

-3.21E-03

-4.06E-01

1/2 product

1 product

2 points

processing, waste

disposal of material

flows transported to

processing and

5.87E-03

3.21E-04

1.66E-01

Plastic and metal

recycling processes.

Results represent the weighted average using production volumes for the products covered. Variations of specific products for differences of 10-20% against the average are indicated in purple; differences greater than 20%

Dual-Max®, E-Max®, Tornado Flush™, 1G®, and EcoPower® technologies reduce water consumption in the use phase

- 50% electricity from renewable energy
- 100% of post-industrial ceramic waste is recycled See how we make it greener

Energy efficiency programs optimize the firing process

LIFE CYCLE STAGE	PRODUCTION	CONSTRUCTION	USE	END OF LIFE	RECOVERY		
Information modules: Included Excluded*	A1 Raw Materials	A4 Transportation/ Delivery	B1 Use	C1 Deconstruction/ Demolition	D Reuse, recovery and/or recycling		
*Installation and deconstruction/demolition are mostly manual. The toilets and/or urinals should not need repair, maintenance or	A2 Transportation	A5 Construction/ Installation	B2 Maintenance	C2 Transportation			
replacement during the modeled life time.	A3 Manufacturing		B3 Repair	C3 Waste processing			
Operational energy use is irrelevant to the life cycle of the modeled product.			B4 Replacement	C4 Disposal			
Reuse and energy recovery are not modeled for toilets and/or urinals.			B5 Refurbishment				
			B6 Operational energy use				
			B7 Operational water use				
	RILHA						
SM 2013 Learn about SM Single Score results							

lts			
8.15 mPts	0.65 mPts	30.64 mPts	1.44 mPts
Ceramic parts	Transportation of the	Volume of water use	Transport to waste

during the operation

of the product and

energy use (such as

the embedded

2.28E+00

1.56E-01

2.13E+01

		packaging.	electricity) in the water used.	a landfill.		
TRACI v2.1 results per o						
LIFE CYCLE STAGE	PRODUCTION	CONSTRUCTION	USE	END OF LIFE	RECOVERY	
Ecological damage						

product to

disposal of

installation site or

consumer and

Impact Category

kg SO₂ eq

kg PM_{2.5} eq

kg O₃ eq

Acidification

Respiratory effects

Smog

Impact Category

Impacts per 20 years of service

Materials or processes contributing >20%

to total impacts in each life cycle stage

Eutrophication	kg N eq	?	6.32E-02	6.35E-03	2.57E-01	5.46E-04
Global warming	kg CO₂ eq	?	1.16E+02	8.50E+00	4.38E+02	1.12E+00
Ozone depletion	kg CFC-11 eq	?	5.91E-06	1.89E-08	3.32E-05	1.23E-07

production as well

as raw materials

transport.

4.01E-01

3.38E-02

6.50E+00

Human health d	amage						
Impact Category	Unit						
Carcinogenics	CTU _h	?	1.40E-06	9.20E-08	8.99E-06	1.21E-08	-1.43E-07
Non-carcinogenics	CTU _h	?	2.09E-05	8.59E-07	4.14E-05	9.90E-08	-1.06E-06

9.19E-04

1.63E+00

5.31E-02

Additional environmental information

Unit

Ecotoxicity	CTU _e	?	6.90E+01	1.62E+01	1.55E+02	1.86E+00	-2.73E+00
Fossil fuel depletion	MJ surplus	?	1.95E+02	1.17E+01	2.75E+02	2.18E+00	-4.82E+00

SM Transparency Report Framework Part A: LCA Calculation Rules and Background Report Requirements | Version 2018 (compliant with ISO14040-44 and ISO14025)

VERIFICATION

TOT - 09/14/18 - 011

version), TOTO 2018

References

Part B: Product Group Definition – Residential Toilets

LCA Background Report

Transparency Reports™ / environmental product declarations enable purchasers and users to compare the potential environmental performance of products on a life cycle basis. They are designed to present information transparently to make the limitations of comparability more understandable. TRs/EPDs of products that conform to the same PCR and include the same life

TOTO Sanitary Ceramic Products - Ultramax LCA Background Report (public

cycle stages, but are made by different manufacturers, may not sufficiently align to support direct comparisons. They therefore, cannot be used as comparative assertions unless the conditions defined in ISO 14025 Section 6.7.2. 'Requirements for Comparability' are satisfied.

MR Building product disclosure and optimization

Industry-wide (generic) EPD

Materials and resources

Rating systems

Environmental product declarations **Environmental product declarations**

The intent is to reward project teams for selecting products from manufacturers

who have verified improved life-cycle environmental performance.

Product-specific Type III EPD

LEED BD+C: New Construction | v4 - LEED v4

▼ NC 3.5.1.2 Path B: Prescriptive Path for Building Core and Shell C 3.5.2.2 and SI 4.1.2 Path B: Prescriptive Path for Interior Fit-outs

▼ Third-party certified type III EPD

Collaborative for High Performance Schools National Criteria **MW 7.1 – Environmental Product Declarations**

Green Globes for New Construction and Sustainable Interiors

independently reviewed and verified **✓** NSF 3rd party reviewed to the SM Transparency Report Framework and ISO 14025. **Transparency Report NSE NSF** International **Verified** P.O Box 130140 Material Health Evaluation 789 N.Dixboro Road **Self-declared**

LCA

Ann Arbor, MI 48105, USA +1 734 769 8010 Validity: 09/14/18 - 09/14/23

International Living Future Institute 501 East Madison St.

The material health evaluation is

accordance with the Manufacturers

self-declared and done in

Guide to Declare.

Seattle, WA 98122 www.living-future.org 206 223 2028

TOTO USA

1155 Southern Road

Morrow, GA 30260

Contact us

NTERNATIONAL IVING FUTURE

©2018 | The SM Transparency Report™Program is operated by Sustainable Minds® | Member, Program Operator Consortium | All rights reserved | Privacy policy

SM Transparency Report™+ Material Health Overview™

The LCA and Report are

LCA & material health results & interpretation

Ultramax® MS854114E, MS604114CEFG, & MS604114CUFG

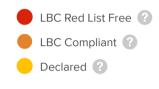
Material health

Evaluation program: Declare

Declare labels are issued to products disclosing ingredient inventory, sourcing and end of life options. Declare labels are based on the Manufacturers Guide to Declare, administered by the International Living Future Institute (LFI).

How it works

Material ingredients are inventoried and screened against the Living Building Challenge (LBC) Red List which represents the 'worst in class' materials, chemicals, and elements known to pose serious risks to human health and the greater ecosystem.


The Declare product database and label are used to select products that meet the Living Building Challenge's stringent materials requirements, streamlining the materials specification and certification process.

Assessment scope and results

Content inventory: All ingredients identified by name and CAS # Inventory threshold: 100 ppm

Declaration status:

The Declare product database and label are used to select products that meet the LBC's stringent materials requirements, streamlining the materials specification and certification process.

Click the label to see the full declaration.

How this rating was achieved

Declare level

'Declared' is awarded to products when all the ingredients have been selfdisclosed to promote transparency.

What's in the product and why

Manufacturing in the United States means that robust human labor, safety and environmental rules and regulations were followed. In addition, local sourcing of raw materials means that less smog and air pollution are generated as a result of transport. The ceramic body and glaze makes up ~92-93% of the total mass of the toilet. Therefore, manufacturing and transportation of the ceramic create the greatest human health impacts when compared to the overall manufacture of the entire toilet. By specifying an Ultramax toilet manufactured in the United States, the consumer helps mitigate these human health impacts.

Red List materials

The toilet trip lever handle is plated with chrome (Hexavalent Chromium VI). Chromium material is used as a decorative finish in applications where corrosion-resistance and durability are required. During the chrome plating process health hazards have been identified and are managed according the OHSA Guidelines. Process controls are used to protect the environment and the production workers wear personal protection equipment. After the plating process the chrome surface is inert and does not pose any health risks. The trip lever in the final form does not represent any hazards to the user.

TOTO continues to investigate alternative finishes in order to reduce and/or eliminate Chromium VI on the toilet trip levers. Standard versions of the Ultramax use parts containing PVC (Polyvinyl Chloride), a plastic commonly used within the plumbing industry. The primary health concern is during the production process when the raw material components are in a powder or pelletized form. If inhaled or ingested the results can be toxic and potentially carcinogenic. In the final form, materials are inert and not a hazard to the users of the toilet.

As part of TOTO's efforts to reduce health impacts, PVC-free versions of the Ultramax are available. PVC parts have been removed and replaced with materials of compatible functional strength and chemical resistance. These alternative parts are sourced within the continental United States. It should be noted that there are no legislative or regulatory mandates to remove this material from a product, however, as part of our goal to mitigate adverse health impacts, TOTO has decided to move beyond compliance by voluntarily eliminating this compound.

Where it goes at the end of its life

TOTO encourages consumers to recycle their used toilet and toilet parts. Contact your local municipality for recycling programs.

How we're making it healthier

Goals and plans for improvement:

- Utilize alternative materials to PVC, removing this compound from tank parts in all TOTO models.
- With no compromise to beauty, functionality, or durability, TOTO intends to offer alternative finishes for trip levers that do not require chromium VI.

See how we make it greener

References

Declare

TOTO USA, Declare label for Eco Ultramax MS854114E TOTO USA, Declare label for Ultramax II MS604114CEFG TOTO USA, Declare label for Ultramax II 1G® MS604114CUFG

Manufacturer's Guide to Declare

A comprehensive guide providing information about the program, the assessment methodology, how to submit material data to obtain a Declare label and how they are used to meet the Health & Happiness and Materials Petals of the Living Building Challenge.

Rating systems

LEED BD+C: New Construction | v4 - LEED v4

Building product disclosure and optimization

Material ingredients

1 product each

Credit value options

✓ 1. Reporting
✓ 2. Optimization
✓ 3. Supply chain optimization

Living Building Challenge 3.0 Materials petals imperatives

10. Red List Free 12. Responsible Industry 13. Living Economy Sourcing

Air 26. Enhanced Material Safety

WELL Building Standard® Air and Mind Features

Collaborative for High Performance Schools National Criteria

MW 10.1 – Building Product Health Related Information Reporting

Mind 97. Material Transparency Mind 98. Organizational Transparency

Product Health Related Information Report

1 point

VERIFICATION

SM Transparency Report™+ Material Health Overview™

3rd party reviewed **✓** NSE Transparency Report **NSE Verified**

LCA

Self-declared Validity: 09/14/18 - 09/14/23

TOT - 09/14/18 - 011

Material Health Evaluation

The LCA and Report are independently reviewed and verified to the SM Transparency Report Framework and ISO 14025.

NSF International P.O Box 130140

789 N.Dixboro Road Ann Arbor, MI 48105, USA www.nsf.org +1 734 769 8010

The material health evaluation is self-declared and done in accordance with the Manufacturers **Guide to Declare.**

International Living Future Institute

501 East Madison St. Seattle, WA 98122

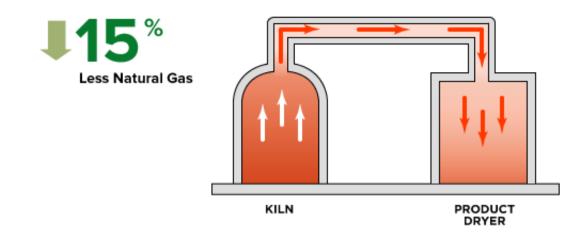
www.living-future.org 206 223 2028

TOTO USA

1155 Southern Road Morrow, GA 30260

Contact us

How we make it greener


SM Transparency Catalog ► TOTO ► Ultramax®

Ultramax® MS854114E, MS604114CEFG, & MS604114CUFG

Collapse all

PRODUCTION

See LCA results by life cycle stage

Waste heat from the kilns is routed to the product dryer. This reduces 15% natural gas consumption.

year.

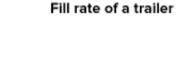
TOTO's Morrow plant matches 100% of its electricity usage through Georgia Power Simple Solar and helps grow solar energy. 14 million kilowatt hours of green energy helps reduce 23 million pounds of carbon each

0.45 million gallons per month of greywater is used in TOTO's operations. 1,620 of kwh in energy is

reduced due to less potable water.

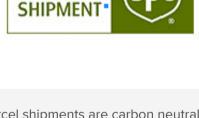
65% of all cardboard used is 100% recycled content.

CONSTRUCTION



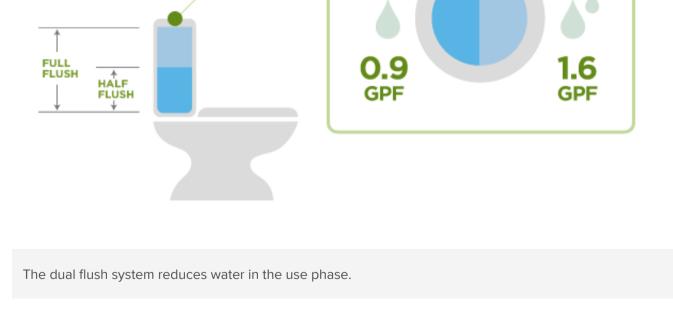
and cutting transportation cost in half.

CARBON

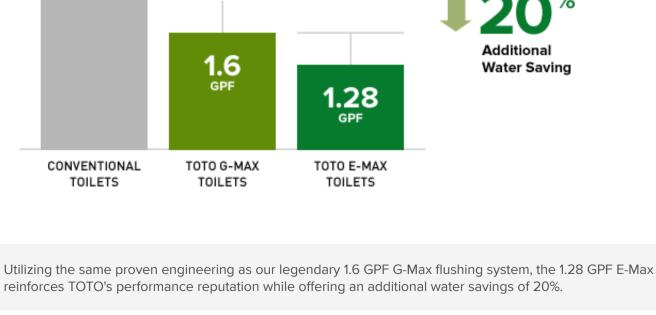

NEUTRAL

INCREASES = |

One-piece toilets are shipped with every other toilet upside down, increasing the fill rate of a truck trailer

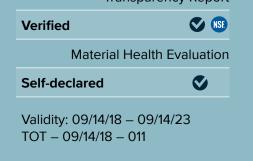


Transport Partner


SmartWay™

USE

OPTIMIZED PERFORMANCE



VERIFICATION

✓ NSF 3rd party reviewed to the SM Transparency Report accordance with the Manufacturers Framework and ISO 14025. **Guide to Declare.** Transparency Report

The LCA and Report are

SM Transparency Report™+ Material Health Overview™

LCA

NSF International P.O Box 130140 789 N.Dixboro Road Ann Arbor, MI 48105, USA

independently reviewed and verified

+1 734 769 8010

 $@2018 \mid The \ SM \ Transparency \ Report^{m}Program \ is \ operated \ by \ Sustainable \ Minds @ \mid Member, \ Program \ Operator \ Consortium \mid All \ rights \ reserved \mid Privacy \ policy \ Program \ Operator \ Consortium \ Program \ Operator \ Consortium \ Program \ Operator \ Consortium \ Operator \ Consortium \ Operator \ Ope$

International Living Future Institute 501 East Madison St. Seattle, WA 98122

The material health evaluation is

self-declared and done in

www.living-future.org 206 223 2028 INTERNATIONAL LIVING FUTURE Contact us

1155 Southern Road

Morrow, GA 30260

TOTO USA