

SM Transparency Catalog
Ferguson
PROFLO[®] Calhoun 1500 Series Toilet

PROFLO[®] Calhoun 1500 Series Toilet

PF1500WH, PF1501WH, PF1503WH, PF6110WH, PF6112RWH, PF6112WH,PF6112WHM, PF6114WH, PF6112KWH 1.28gpf, 1.6gpf

Utilizing a gravity flush system to create a powerful flushing action, the WaterSense certified 1.28 gpf version of the Calhoun 1500 Series Toilet uses 20% less water than the current standard while maintaining superior performance. It is constructed of vitreous china to ensure durability and dependability. The toilet installs in a floor mounted configuration, offers an elongated bowl option for extra comfort and multiple tank options to service different rough-ins.

When it comes to quality, PROFLO is uncompromising—treating value and performance as equals. Craftsmanship and style work hand-in-hand to deliver the best possible product. From rough products to finished fixtures, PROFLO products are developed with both presentation and performance in mind.

Performance dashboard

Features & functionality

Available in 1.28 GPF and 1.6 GPF

Gravity-fed Siphon Jet Flush

Flush Valve: 3"

Sanitary bar on bowl for easy cleaning

Quick connect, two-bolt tank-to bowl installation

Visit Ferguson for more product information

PF1500WH, PF1501WH, PF1503WH, PF6110WH, PF6112RWH, PF6112WH, PF6112WHM, PF6114WH, PF6112KWH

MasterFormat® 22 42 13.13 PROFLO® Calhoun 1500 Series Toilet Technical Data Sheet

Environment & materials

Improved by:

APMO/cUPC ASME A112.19.2 / CAS B45.1 MaP Rated 1000g

Certification & rating systems:

EPA WaterSense certified

See LCA, interpretation & rating systems

See materials, interpretation & rating systems

SM Transparency Report (EPD)™ + Material Health Overview™

EPD	LCA
3rd-party reviewed	⊘
Transparency F	Report (EPD)
3rd-party verified	⊘
Validity: 08/13/2024 – 08 FER – 20240813 – 002	3/12/2029
MATERIAL HEALTH	Material evaluation

Self-declared

This environmental product declaration (EPD) was externally verified by Industrial Ecology Consultants, according to ISO 21930:2017; SM Part A; SM Part B: Residential toilets; and ISO 14025:2006.

Industrial Ecology Consultants 35 Bracebridge Rd Newton, MA 02459 www.industrial-ecology.com

(617) 553-4929

SUMMARY Reference PCR

5M Part B: Residential toilets, v3.0

Regions; system boundaries North America; Cradle-to-grave

Functional unit One residential toilet in an average residential environment used over the estimated service of the building

LCIA methodology; LCA software; LCI database TRACI 2.1; SimaPro Analyst 9.5; ecoinvent v3.10 and US-EI 2.2 databases

Public LCA

CA background report of Ferguse single handle lavatory faucets &

FERGUSON

751 Lakefront Commons Newport News, VA 23606 (800) 221-3379

Ø

%FERGUSON

PROFLO® Calhoun 1500 Series Toilet

Toilet with 1.28gpf tank

Sustainable Minds[®]

ansparency Report (EPD)

nk Toilet wit

EPD additional cont

PERFORMANCE DASHBOARD

Material health

Scope and summary

 \bigcirc Cradle to gate \bigcirc Cradle to gate with options \heartsuit Cradle to grave

Functional unit

One residential toilet in an average residential environment used over the estimated service of the building. The expected service life (ESL) of a building is 75 years, and all use stage activity and impacts are accounted for in that full ESL period. The reference service life (RSL) of the toilet is 20 years. This two-piece toilet is comprised of a toilet bowl, toilet tank, and toilet seat, weighing a total of 45.5 kg.

Manufacturing data

Manufacturing data has been collected at the manufacturing facility in China for the data reporting period of 2023.

Maintenance

The cleaning of the toilet involves cleaning it twice a month, using 50mL of a 1% sodium lauryl sulfate (SLS) solution per clean for 75 years, which is the building estimated service life. The use of 50 mL/clean over 24 cleans/year for 75 years gives a total of 90L of solution. Using a density of 1.01kg/L for a 1% SLS solution, 90.9kg of solution will be needed over the course of 75 years. Therefore, 0.9kg of SLS plus 90kg of water were included in the model.

Repair

The flush handle, rubber ring, and fill valve seals in the tank are assumed to be fully replaced once during each reference service life (RSL) period of 20 years. The old components are assumed to be 100% landfilled with a waste transportation distance of 100km.

Material composition greater than 1% by weight

PART	MATERIAL	% WT.
Product	Ceramic	85-90%
Product	Polypropylene	2-5%
Packaging	Carton, paper inserts and label	2-5%
Product	Acrylonitrile butadiene styrene (ABS)	1-2%
Product	Other	<1%

Total impacts by life cycle stage [mPts/func unit]

What's causing the greatest impacts

All life cycle stages

Environmental performance is driven primarily by the use stage. The energy consumed in municipal water systems for upstream water collection and supply, and downstream treatment, contributes to about 75% of the impacts for the 1.28gpf toilet and about 78% of impacts for the 1.6gpf toilet. The production stage also shows considerable impacts, driven by the consumption of electricity and natural gas during ceramics manufacturing. Replacement of the toilet at the end of its reference service life also contributes significantly to impacts.

Production and installation

The production and installation stages account for only less than 5% of global warming potential. Energy consumed during ceramics manufacturing (tank and bowl) accounts for most of the impacts from manufacturing. Ceramic wastewater contributes significantly to the carcinogenics, non-carcinogenics, and ecotoxicity impact categories.

Use

The use stage itself contributes to "90% of the impacts. Within the use stage, operational water use dominates the results for all impact categories, followed by the 2.5 replacement toilets required to fulfill the estimated service life of the building.

End of life

The end-of-life stage accounts for a relatively low portion of the results for all impact categories, at less than 2% in all categories. This is driven by the transportation of toilets to landfill at the end of their useful life.

Replacement

After the end of the toilet's reference service life, it is assumed to be fully replaced. An additional 2.75 replacements are included over the building's ESL of 75 years. No auxiliary materials, electricity, or other hardware components are consumed during the replacement.

Operational water use

The amount of water used by the toilet depends on its flush rate. The 1.28gpf toilet is assumed to be used 13 times per day over 75 years, resulting in 455,520 gallons of water over its lifetime. An electricity factor of 0.000961 kWh per liter of water is used to represent energy for upstream municipal water collection, treatment, supply, and downstream management.

How we're making it greener

Ferguson has established an EHS system that complies with regulations and serves to educate its team, attaching importance to environmental protection, energy savings and waste reduction, health and safety, and continuous improvement. The have implemented:

- Routine inspection and monitoring of environmental protection facilities in the production process
- Environmental monitoring plans
- Waste monitoring
- Improvements to the level of accuracy across all operations

See how we make it greener

Download PDF

LIFE CYCLE STAGE	PRODUCTION	CONSTRUCTION	USE	END OF LIFE
	(X) A1 Raw materials	(X) A4 Transportation/ Delivery	(X) B1 Use	(X) C1 Deconstruction/ Demolition
	(X) A2 Transportation	(X) A5 Construction/ Installation	(X) B2 Maintenance	(X) C2 Transportation
	(X) A3 Manufacturing		(X) B3 Repair	(X) C3 Waste processing
			(X) B4 Replacement	(X) C4 Disposal
			(X) B5 Refurbishment	
Information modules: Included (X) Excluded (MND)*			(X) B6 Operational energy use	
			(X) B7 Operational water use	

SM Single Score [mPts/func unit]

Toilet with 1.28 gpf tank	3.27 mPts	0.7 mPts	211.81 mPts	0.24 mPts
Materials or processes contributing >20% to total impacts in each life cycle stage	Ceramic parts production for the toilet tank and bowl.	Transportation of the product to installation site or consumer and disposal of packaging.	Water consumed during toilet operation.	Transport to waste processing and final disposal of the toilet in a landfill.

TRACI v2.1 results per functional unit - PROFLO® Calhoun 1500 Series Two-piece Toilet 1.28 gpf

LIFE CYCLE STAGE			PRODUCTION	CONSTRUCTION	USE	END OF LIFE
Ecological damage						
Impact category	Unit					
Global warming	kg CO ₂ eq	0	6.32E+01	1.11E+01	1.25E+03	5.47E+00
Ozone depletion	kg CFC-11 eq	0	1.03E-06	6.00E-07	5.62E-05	1.01E-06
Acidification	kg SO $_2$ eq	0	2.57E-01	1.73E-01	6.18E+00	2.87E-02
Eutrophication	kg N eq	0	2.40E-02	7.93E-03	1.37E+01	3.40E-03
Human health c						
Impact category	Unit	0				
Smog	kg O ₃ eq	0	3.93E+00	3.42E+00	6.47E+01	8.43E-01
Respiratory effects	kg PM _{2.5} eq	0	4.19E-02	9.69E-03	4.27E-01	3.36E-03
Additional environmental information						
Impact category Unit						

Carcinogenics	CTU _h	2.5	59E-07	3.40E-08	3.76E-05	2.15E-09
Non-carcinogenics	CTU _h	9 5.8	84E-06	5.15E-07	7.64E-04	2.38E-07
Ecotoxicity	CTU _e	0 5.9	94E+01	7.72E+00	2.02E+03	9.97E-01
Fossil fuel depletion	MJ surplus	8.2	27E+01	1.94E+01	1.58E+03	9.78E+00

References

LCA Background Report

LCA background report of Ferguson single handle lavatory faucets & residential two-piece toilets, 2024; SimaPro Analyst 9.5; ecoinvent v3; TRACI 2.1.

ISO 14025, "Sustainability in buildings and civil engineering works -- Core rules for environmental product declarations of construction products and services"

ISO 21930:2017, "Sustainability in Building Construction — Environmental Declaration of Building Products" serves as the core PCR along with Sustainable Minds Part A.

SM Part A: LCA calculation rules and report requirements, version 2023 August, 2023. PCR review conducted by the Sustainable Minds TAB,

Rating systems

The intent is to reward project teams for selecting products from manufacturers who have verified improved life-cycle environmental performance.

LEED BD+C: New Construction | v4 - LEED v4

Building product disclosure and optimization

Environmental product declarations

O Industry-wide (generic) EPD	½ product
Product-specific Type III EPD	1 product

tab@sustainableminds.com.

SM Part B: Residential toilets, v3.0

March, 2024. PCR reviewed for conformance to ISO 14025, ISO 21930:2017, and ACLCA PCR Open Standard v1.0 by Jack Geibig, Chair (Ecoform); Hugues Imbeault-Tétreault, ing., M.Sc.A. (Groupe AGÉCO); Rebe Feraldi, LCACP, CLAR (Pacific Northwest National Laboratory).

Download PDF SM Transparency Report/EPD

SM Transparency Reports (TR) are ISO 14025 Type III environmental declarations (EPD) that enable purchasers and users to compare the potential environmental performance of products on a life cycle basis. They are designed to present information transparently to make the limitations of comparability more understandable. Environmental declarations of products that conform to the same PCR and include the same life cycle stages, but are made by different manufacturers, may not sufficiently align to support direct comparisons. They therefore cannot be used as comparative assertions unless the conditions as defined in ISO 14025 Section 6.7.2 'Requirements for Comparability' are satisfied. In order to support comparative assertions, this EPD meets all comparability requirements stated in ISO 14025:2006. However, differences in certain assumptions, data quality, and variability between LCA data sets may still exist. Any EPD comparison must be carried out at the building level per ISO 21930 guidelines, use the same subcategory PCR where applicable, include all relevant information modules, be limited to EPDs applying a functional unit, and be based on equivalent scenarios with respect to the context of construction works. Some LCA impact categories and inventory items are still under development and can have high levels of uncertainty. To promote uniform guidance on the data collection. calculation, and reporting of results, the ACLCA methodology (ACLCA 2019) was used.

LEED BD+C: New Construction | v4.1 - LEED v4.1

Building product disclosure and optimization

Environmental product declarations

O Industry-wide (generic) EPD	1 product
V Product-specific Type III EPD	1.5 products

Collaborative for High Performance Schools National Criteria

MW C5.1 – Environmental Product Declarations

Sthird-party certified type III EPD

2 points

Green Globes for New Construction and Sustainable Interiors

Materials and resources

VC 3.5.1.2 Path B: Prescriptive Path for Building Core and Shell

V NC 3.5.2.2 and SI 4.1.2 Path B: Prescriptive Path for Interior Fit-outs

BREEAM New Construction 2018

Mat 02 - Environmental impacts from construction products

Environmental Product Declarations (EPD)

O Industry-average EPD	.5 points
Multi-product specific EPD	.75 points
Product-specific EPD	1 point

SM Transparency Report (EPD)™ + Material Health Overview™

EPD	LCA
3rd-party reviewed	•
Transparency I	Report (EPD)
3rd-party verified	♥
Validity: 08/13/2024 – 0 FER – 20240813 – 002	8/12/2029
MATERIAL HEALTH	Material evaluation
	-

 \checkmark

Self-declared

This environmental product declaration (EPD) was externally verified by Industrial Ecology Consultants, according to ISO 21930:2017; SM Part A; SM Part B: Residential toilets; and ISO 14025:2006.

Industrial Ecology Consultants 35 Bracebridge Rd Newton, MA 02459 www.industrial-ecology.com (617) 553-4929

Industrial Ecology Consultants

SUMMARY

Reference PCR SM Part B: Residential toil

Regions; system boundaries North America; Cradle-to-grave

Functional unit One residential toilet in an average residential environment used over the estimated service of the building

LCIA methodology; LCA software; LCI database

TRACI 2.1; SimaPro Analyst 9.5; ecoinvent v3.10 and US-EI 2.2 databases

Public LCA

LCA background report of Ferguson single handle lavatory faucets & residential two-piece toilets

FERGUSON

751 Lakefront Commons Newport News, VA 23606 (800) 221-3379

Contact us

© 2024 | The SM Transparency Report [EPD][™] Program is operated by Sustainable Minds[®] (www.sustainableminds.com) | Privacy policy

%FERGUSON

SM Transparency Catalog
Ferguson
PROFLO® Calhoun 1500 Series Toilet

LCA results & interpretation

Sustainable Minds[®]

ansparency Report (EPD)

PROFLO® Calhoun 1500 Series Toilet

Download PDF

L

Scope and summary

○ Cradle to gate ○ Cradle to gate with options S Cradle to grave

Functional unit

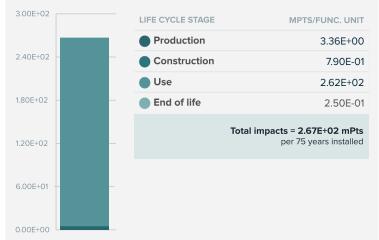
One residential toilet in an average residential environment used over the estimated service of the building. The expected service life (ESL) of a building is 75 years, and all use stage activity and impacts are accounted for in that full ESL period. The reference service life (RSL) of the toilet is 20 years. This two-piece toilet is comprised of a toilet bowl, toilet tank, and toilet seat weighing a total of 47.2 kg.

Manufacturing data

Manufacturing data has been collected at the manufacturing facility in China for the data reporting period of 2023.

Maintenance

The cleaning of the toilet involves cleaning it twice a month, using 50mL of a 1% sodium lauryl sulfate (SLS) solution per clean for 75 years, which is the building estimated service life. The use of 50 mL/clean over 24 cleans/year for 75 years gives a total of 90L of solution. Using a density of 1.01kg/L for a 1% SLS solution, 90.9kg of solution will be needed over the course of 75 years. Therefore, 0.9kg of SLS plus 90kg of water were included in the model.


Repair

The flush handle, rubber ring, and fill valve seals in the tank are assumed to be fully replaced once during each reference service life (RSL) period of 20 years. The old components are assumed to be 100% landfilled with a waste transportation distance of 100km.

Material composition greater than 1% by weight

PART	MATERIAL	% WT.
Product	Ceramic	85-90%
Product	Polypropylene	2-5%
Packaging	Carton, paper inserts and label	2-5%
Product	Acrylonitrile butadiene styrene (ABS)	1-2%
Product	Other	<1%

Total impacts by life cycle stage [mPts/func unit]

What's causing the greatest impacts

All life cycle stages

Environmental performance is driven primarily by the use stage. The energy consumed in municipal water systems for upstream water collection and supply, and downstream treatment, contributes to about 75% of the impacts for the 1.28gpf toilet and about 78% of impacts for the 1.6gpf toilet. The production stage also shows considerable impacts, driven by the consumption of electricity and natural gas during ceramics manufacturing. Replacement of the toilet at the end of its reference service life also contributes significantly to impacts.

Production and installation

The production and installation stages account for only less than 5% of global warming potential. Energy consumed during ceramics manufacturing (tank and bowl) accounts for most of the impacts from manufacturing. Ceramic wastewater contributes significantly to the carcinogenics, non-carcinogenics, and ecotoxicity impact categories.

Use

The use stage itself contributes to "90% of the impacts. Within the use stage, operational water use dominates the results for all impact categories, followed by the 2.5 replacement toilets required to fulfill the estimated service life of the building.

End of life

The end-of-life stage accounts for a relatively low portion of the results for all impact categories, at less than 2% in all categories. This is driven by the transportation of toilets to landfill at the end of their useful life.

Replacement

After the end of the toilet's reference service life, it is assumed to be fully replaced. An additional 2.75 replacements are included over the building's ESL of 75 years. No auxiliary materials, electricity, or other hardware components are consumed during the replacement.

Operational water use

The amount of water used by the toilet depends on its flush rate. The 1.6gpf toilet is assumed to be used 13 times per day over 75 years, resulting in 569,400 gallons of water over its lifetime. An electricity factor of 0.000961 kWh per liter of water is used to represent energy for upstream municipal water collection, treatment, supply, and downstream management.

How we're making it greener

Ferguson has established an EHS system that complies with regulations and serves to educate its team, attaching importance to environmental protection, energy savings and waste reduction, health and safety, and continuous improvement. The have implemented:

- Routine inspection and monitoring of environmental protection facilities in the production process
- Environmental monitoring plans
- Waste monitoring
- Improvements to the level of accuracy across all operations

See how we make it greener

LIFE CYCLE STAGE	PRODUCTION	CONSTRUCTION	USE	END OF LIFE
	(X) A1 Raw materials	(X) A4 Transportation/ Delivery	(X) B1 Use	(X) C1 Deconstruction/ Demolition
	(X) A2 Transportation	(X) A5 Construction/ Installation	(X) B2 Maintenance	(X) C2 Transportation
	(X) A3 Manufacturing		(X) B3 Repair	(X) C3 Waste processing
			(X) B4 Replacement	(X) C4 Disposal
			(X) B5 Refurbishment	
Information modules: Included (X) Excluded (MND)*			(X) B6 Operational energy use	
			(X) B7 Operational water use	

SM Single Score [mPts/func unit]

Toilet with 1.6 gpf tank	3.36 mPts	0.79 mPts	262.32 mPts	0.25 mPts
Materials or processes contributing >20% to total impacts in each life cycle stage	Ceramic parts production for the toilet tank and bowl.	Transportation of the product to installation site or consumer and disposal of packaging.	Water consumed during toilet operation.	Transport to waste processing and final disposal of the toilet in a landfill.

TRACI v2.1 results per functional unit - PROFLO® Calhoun 1500 Series Two-piece Toilet 1.6 gpf

1.52E+03 6.96E-05 7.46E+00	5.67E+00 1.05E-06 2.99E-02
6.96E-05 7.46E+00	1.05E-06
6.96E-05 7.46E+00	1.05E-06
7.46E+00	
	2.99E-02
1705-01	
1.70E+01	3.53E-03
7.63E+01	8.76E-01
5.01E-01	3.50E-03

Unit Impact category CTU_h 0 2.64E-07 2.22E-09 Carcinogenics 3.59E-08 4.68E-05 0 Non-carcinogenics 5.98E-06 5.88E-07 9.50E-04 2.47E-07 **CTU**_b 0 Ecotoxicity CTU 6.12E+01 8.60E+00 2.46E+03 1.02E+00 0 Fossil fuel depletion MJ surplus 8.46E+01 2.29E+01 1.92E+03 1.02E+01

References

LCA Background Report

LCA background report of Ferguson single handle lavatory faucets & residential two-piece toilets, 2024; SimaPro Analyst 9.5; ecoinvent v3; TRACI 2.1.

ISO 14025, "Sustainability in buildings and civil engineering works -- Core rules for environmental product declarations of construction products and services"

ISO 21930:2017, "Sustainability in Building Construction — Environmental Declaration of Building Products" serves as the core PCR along with Sustainable Minds Part A.

SM Part A: LCA calculation rules and report requirements, version 2023 August, 2023. PCR review conducted by the Sustainable Minds TAB,

Rating systems

The intent is to reward project teams for selecting products from manufacturers who have verified improved life-cycle environmental performance.

LEED BD+C: New Construction | v4 - LEED v4

Building product disclosure and optimization

Environmental product declarations

O Industry-wide (generic) EPD	½ product
V Product-specific Type III EPD	1 product

tab@sustainableminds.com.

SM Part B: Residential toilets, v3.0

March, 2024. PCR reviewed for conformance to ISO 14025, ISO 21930:2017, and ACLCA PCR Open Standard v1.0 by Jack Geibig, Chair (Ecoform); Hugues Imbeault-Tétreault, ing., M.Sc.A. (Groupe AGÉCO); Rebe Feraldi, LCACP, CLAR (Pacific Northwest National Laboratory).

Download PDF SM Transparency Report/EPD

SM Transparency Reports (TR) are ISO 14025 Type III environmental declarations (EPD) that enable purchasers and users to compare the potential environmental performance of products on a life cycle basis. They are designed to present information transparently to make the limitations of comparability more understandable. Environmental declarations of products that conform to the same PCR and include the same life cycle stages, but are made by different manufacturers, may not sufficiently align to support direct comparisons. They therefore cannot be used as comparative assertions unless the conditions as defined in ISO 14025 Section 6.7.2 'Requirements for Comparability' are satisfied. In order to support comparative assertions, this EPD meets all comparability requirements stated in ISO 14025:2006. However, differences i certain assumptions, data quality, and variability between LCA data sets may still exist. Any EPD comparison must be carried out at the building level per ISO 21930 guidelines, use the same subcategory PCR where applicable, include all relevant information modules, be limited to EPDs applying a functional unit, and be based on equivalent scenarios with respect to the context of construction works. Some LCA impact categories and inventory items are still under development and can have high levels of uncertainty. To promote uniform guidance on the data collection. calculation, and reporting of results, the ACLCA methodology (ACLCA 2019) was used.

LEED BD+C: New Construction | v4.1 - LEED v4.1

Building product disclosure and optimization

Environmental product declarations

O Industry-wide (generic) EPD	1 product
Product-specific Type III EPD	1.5 products

Collaborative for High Performance Schools National Criteria

MW C5.1 – Environmental Product Declarations

Third-party certified type III EPD

2 points

Green Globes for New Construction and Sustainable Interiors

Materials and resources

VC 3.5.1.2 Path B: Prescriptive Path for Building Core and Shell

V NC 3.5.2.2 and SI 4.1.2 Path B: Prescriptive Path for Interior Fit-outs

BREEAM New Construction 2018

Mat 02 - Environmental impacts from construction products

Environmental Product Declarations (EPD)

O Industry-average EPD	.5 points
O Multi-product specific EPD	.75 points
V Product-specific EPD	1 point

SM Transparency Report (EPD)™ + Material Health Overview™

EPD	LCA
3rd-party reviewed	S
Transparency F	Report (EPD)
3rd-party verified	✓
Validity: 08/13/2024 – 08 FER – 20240813 – 002	8/12/2029
MATERIAL HEALTH	Material evaluation
Self-declared	

This environmental product declaration (EPD) was externally verified by Industrial Ecology Consultants, according to ISO 21930:2017; SM Part A; SM Part B: Residential toilets; and ISO 14025:2006.

Industrial Ecology Consultants 35 Bracebridge Rd Newton, MA 02459 www.industrial-ecology.com (617) 553-4929

SUMMARY Reference PCR

SM Part B: Residential toilets, v3.0

Regions; system boundaries North America; Cradle-to-grave

Functional unit One residential toilet in an average residential environment used over the estimated service of the building

LCIA methodology; LCA software; LCI database TRACI 2.1; SimaPro Analyst 9.5;

ecoinvent v3.10 and US-EI 2.2 databases

Public LCA

LCA background report of Ferguson single handle lavatory faucets & residential two-piece toilets

© 2024 | The SM Transparency Report [EPD]" Program is operated by Sustainable Minds® (www.sustainableminds.com) | Privacy policy

FERGUSON

751 Lakefront Commons Newport News, VA 23606 (800) 221-3379

Contact us

PERFORMANCE DASHBOARD 2 LCA & MATERIAL RESULTS & INTERPRETATION

ION **3** HOW WE MAKE IT GREENER

L

%FERGUSON

EPD additional content

Sustainable Minds®

ansparency Report (EPD)

Toilet with 1.28gpf tank

Toilet with 1.6

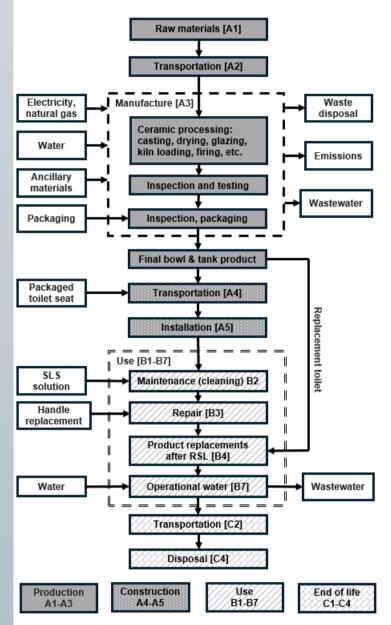
EPD additional content

Material health

Data

Background This product-average plant-specific declaration was created by collecting production data from the China facility. The toilet with 1.28gpf tank is represented by a production-weighted average of three bowl SKUs (PF1500WH, PF1501WH, and PF1503WH), five tank SKUs (PF6110WH, PF6112WHM, PF6112WHM, and PF6114WH), and two toilet seat SKUs (PFTSE2000WH and PFTSWSC2000WH). The 1.6gpf tanks is represented by a production-weighted average of three bowl SKUs (PF1500WH, PF1501WH, and PF1503WH), one tank SKU (PF6112KWH), and two toilet seat SKUs (PFTSE2000WH and PFTSWSC2000WH). Together, they represent the possible combinations of a PROFLO® Calhoun 1500 series two-piece toilet.

All unit processes were modeled using primary data from Ferguson's outsourced manufacturing facilities in combination with their internal operations data. Secondary data sources include ecoinvent and USLCI databases. Literature data was used to fill any data gaps to complete the inventory.


Allocation of multi-input and multi-output processes follows a mass-based approach in the collected data, which is the most appropriate for the unit processes modeled. Allocation approaches in the background data follow the ecoinvent methodology. No co-product allocations were made in the model.

Cut-off criteria for the inclusion of mass and energy flows are 1% of renewable primary resource (energy) usage, 1% nonrenewable primary resource (energy) usage, 1% of the total mass input of that unit process, and 1% of environmental impacts. The total of neglected input flows per module does not exceed 5% of energy usage, mass, and environmental impacts. The only exceptions to these criteria are substances with hazardous and toxic properties, which must be listed even when the given process unit is under the cut-off criterion of 1% of the total mass. No known flows are deliberately excluded from this declaration, and no substances considered to be hazardous or toxic according to the TRI or local regulations are present in the products. Therefore, these criteria have been met. Biogenic carbon is included in reported results.

Major system boundary exclusions

- Construction of major capital equipment
- Maintenance and operation of support equipment
- Human labor and employee transport
- Manufacture and transport of packaging not associated with final product
- Disposal of packaging materials not associated with the final product
- Building operational energy and water use

Flow diagram

Scenarios and additional technical information

Distribution [A4]

Toilet bowls and tanks manufactured in China are first shipped to Ferguson's distribution centers in the United States via several US ports.

Distribution method	Distance
Total road transport (average)	651 km
Sea transport to US ports (average)	14,835 km

The final transportation distance from Ferguson distribution centers to the final installation site differs for each product type.

Product type	Distance (average)
Toilet bowl	312 km
Toilet tank 1.6 gpf	853 km
Toilet tank 1.28 gpf	407 km
Toilet seat	606 km

Installation [A5]

Installation of toilets is manual, and the resulting packaging waste is assumed to be transported 100 km to final disposal. Disposal scenarios for packaging are assumed to be 80.88% recycled, 15.37% landfilled, and the remaining incinerated, in alignment with US EPA's 2018 end of life data for containers and packaging.

End-of-life [C1-C4]

The model reflects the assumptions that toilets are 100% landfilled. The product is assumed to be transported 100 km via truck to final disposal.

Product information

Product type	Product specification	Description
Two-piece toilet 1.28gpf	IAPMO/cUPC ASME A112.19.2 / CAS B45.1	1.28 GPF 15-1/2" or 17" round front or elongated toilet with 10", 12", or 14" rough-in tank (ADA options available)
Two-piece toilet 1.6gpf	MaP Rated 1000g	1.6 GPF 15-1/2" round front or 17" elongated toilet with 12" rough-in tank

Major assumptions and limitations

- Since energy and resource inputs were not available on a per-product basis for toilet tanks and bowls, electricity and other resources consumed were allocated to the SKUs studied by mass. Later, resources per kilogram of ceramic processed were developed. Slight deviations between SKUs are possible.
- Toilet seats may be sourced from any manufacturer, including Ferguson.
 Ferguson also has several seat SKUs; however, an average of the heaviest and lightest seats (by mass) was used. While the potential environmental impact from the seat is insignificant to the overall results, some seat types will have higher impacts than others.
- Water consumption plays a significant role in the total potential environmental impacts of toilets. While water use assumptions were defined by the PCR, changes to the number of uses per day are expected to significantly impact the total results.

 Generic data sets used for material inputs, transportation, and waste processing are considered good quality, but actual impacts from material suppliers, transport carriers, and local waste processing may vary.

Data quality assessment

Precision: As the relevant foreground data is primary data or modeled based on primary information from the owner of the technology, precision is considered to be high. Background data is from the ecoinvent v3.10 and US-EI 2.2 databases with documented precision to the extent available.

Completeness: The product system was checked for mass balance and completeness of the inventory. The data included is considered complete based on our understanding of the manufacturing site and a review with key stakeholders on the Ferguson team, and cut-off criteria were observed consistent with those prescribed in the PCR. Besides capital equipment, no data was knowingly omitted.

Consistency: The consistency of the model is considered high. Primary data were collected with a similar level of detail, while background data were sourced primarily from the ecoinvent database. Other databases were used if data were not available in ecoinvent or the data set was judged to be more representative.

PROFLO® Calhoun 1500 Series Two-piece Toilet 1.28 gpf - Resource use, output and waste flows, and carbon emissions & removals per functional unit

						-			DC		01.01	
Parameters Pesource use indicators	Unit	A1-A3	A4-A5	B1	B2	B3	B4	B5	B6	B7	C1-C4	Total
Resource use indicators	MJ,											
Renewable primary energy used as energy carrier (RPR _E)	NCV	4.18E+01	2.61E-01	0	7.67E+01	1.44E+00	1.16E+02	0	0	1.59E+03	1.61E-01	1.83E+03
Renewable primary resources with energy content used as material (RPR _M)	MJ, NCV	2.43E+01	0	0	0	0	5.82E+01	0	0	0	0	9.11E+01
Total use of renewable primary resources with energy content (RPR _{total})	MJ, NCV	6.61E+01	2.61E-01	0	7.67E+01	1.44E+00	1.16E+02	0	0	1.59E+03	1.61E-01	1.92E+03
Non-renewable primary resources used as an energy carrier (NRPR _E)	MJ, NCV	7.60E+02	1.36E+02	0	1.63E+01	0	4.47E+01	0	0	1.78E+04	6.87E+01	2.15E+04
Non-renewable primary resources with energy content used as material (NRPR _M)	MJ, NCV	9.41E+01	0	0	0	0	0	0	0	0	0	3.53E+02
Total use of non-renewable primary resources with energy content (NRPR _{tota})	MJ, NCV	8.54E+02	1.36E+02	0	1.63E+01	0	4.47E+01	0	0	1.78E+04	6.87E+01	2.18E+04
Secondary materials (SM)	kg	0	0	0	0	0	0	0	0	0	0	0
Renewable secondary fuels (RSF)	MJ, NCV	0	0	0	0	0	0	0	0	0	0	0
Non-renewable secondary fuels (NRSF)	MJ, NCV	0	0	0	0	0	0	0	0	0	0	0
Recovered energy (RE)	MJ, NCV	0	0	0	0	0	0	0	0	0	0	0
Use of net fresh water resources (FW)	m ³	8.58E+01	1.00E+00	0	5.31E+00	6.05E+00	2.39E+02	0	0	5.36E+02	3.08E-01	8.74E+02
Output flows and waste categ	ory ind	icators										
Hazardous waste disposed (HWD)	kg	2.10E-02	0	0	0	0	5.78E-02	0	0	0	0	7.56E-02
Non-hazardous waste disposed (NHWD)	kg	0	2.98E-01	0	0	0	1.12E+02	0	0	0	4.03E+01	1.47E+02
High-level radioactive waste, conditioned, to final repository (HLRW)	kg	8.58E-03	1.12E-04	0	1.62E-04	4.34E-04	2.39E-02	0	1.80E+00	2.80E-01	1.42E-05	2.56E-01
Intermediate- and low-level radioactive waste, conditioned, to final repository (ILLRW)	kg	1.43E-03	6.09E-05	0	1.53E-07	2.76E-04	4.17E-03	0	5.98E+00	9.39E-01	3.04E- 05	7.57E-01
Components for re-use (CRU)	kg	0	0	0	0	0	0	0	0	0	0	0
Materials for recycling (MR)	kg	5.13E+00	4.73E+00	0	4.74E+00	0	1.83E+01	0	0	0	0	2.41E+01
Materials for energy recovery (MER)	kg	5.29E-02	0	0	0	0	1.45E-01	0	0	0	0	1.90E-01
Exported energy (EE)	MJ	9.72E-01	0	0	0	0	2.67E+00	0	0	0	0	3.50E+00
Carbon emissions and remova	als											
Biogenic Carbon Removal from Product (BCRP)	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0
Biogenic Carbon Emission from Product (BCEP)	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0
Biogenic Carbon Removal from Packaging (BCRK)	kg CO ₂	3.46E+00	0	0	0	0	9.52E+00	0	0	0	0	1.30E+01
Biogenic Carbon Emission from Packaging (BCEK)	kg CO₂	0	2.89E+00	0	0	0	7.99E+00	0	0	0	1.18E-02	1.09E+01
Biogenic Carbon Emission from Combustion of Waste from Renewable Sources Used in Production Processes (BCEW)	kg CO ₂	0	1.28E-01	0	0	0	3.52E-01	0	0	0	0	4.80E-01
Calcination Carbon Emissions (CCE)	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0
Carbonation Carbon Removals (CCR)	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0
Carbon Emissions from Combustion of Waste from Non-Renewable Sources used in Production Processes (CWNR)	kg CO₂	0	0	0	0	0	0	0	0	0	0	0

PROFLO® Calhoun 1500 Series Two-piece Toilet 1.6 gpf - Resource use, output and waste flows, and carbon emissions & removals per functional unit

Parameters	Unit	A1-A3	A4-A5	B1	B2	B3	B4	B5	B6	B7	C1-C4	Total
Resource use indicators	onit	ATAS	ATAS	51	52	85	01	- 55	50	57	01-04	Total
Renewable primary energy used as energy carrier (RPR _E)	MJ, NCV	4.26E+01	3.99E-02	0	7.67E+01	1.58E+00	1.18E+02	0	0	1.99E+03	1.68E-01	2.23E+03
Renewable primary resources with energy content used as material (RPR _M)	MJ, NCV	2.43E+01	0	0	0	0	6.69E+01	0	0	0	0	9.13E+01
Total use of renewable primary resources with energy content (RPR _{total})	MJ, NCV	6.69E+01	3.99E-02	0	7.67E+01	1.58E+00	1.85E+02	0	0	1.99E+03	1.68E-01	2.32E+03
Non-renewable primary resources used as an energy carrier (NRPR _E)	MJ, NCV	7.82E+02	1.61E+02	0	1.63E+01	4.82E+01	2.79E+03	0	0	2.22E+04	7.14E+01	2.61E+04
Non-renewable primary resources with energy content used as material (NRPR _M)	MJ, NCV	9.44E+01	0	0	0	0	2.60E+02	0	0	0	0	3.54E+02
Total use of non-renewable primary resources with energy content (NRPR _{tota})	MJ, NCV	8.76E+02	1.61E+02	0	1.63E+01	4.82E+01	3.05E+03	0	0	2.22E+04	7.14E+01	2.64E+04
Secondary materials (SM)	kg	0	0	0	0	0	0	0	0	0	0	0
Renewable secondary fuels (RSF)	MJ, NCV	0	0	0	0	0	0	0	0	0	0	0
Non-renewable secondary fuels (NRSF)	MJ, NCV	0	0	0	0	0	0	0	0	0	0	0
Recovered energy (RE)	MJ, NCV	0	0	0	0	0	0	0	0	0	0	0
Use of net fresh water resources (FW)	m ³	8.70E+01	1.03E+00	0	5.31E+00	0	2.43E+02	0	0	6.70E+02	3.08E-01	1.01E+03
Output flows and waste categ	ory indic	ators										
Hazardous waste disposed (HWD)	kg	2.10E-02	0	0	0	0	5.78E-02	0	0	0	0	7.88E-02
Non-hazardous waste disposed (NHWD)	kg	0	2.98E-01	0	0	0	1.12E+02	0	0	0	4.03E+01	1.52E+02
High-level radioactive waste, conditioned, to final repository (HLRW)	kg	8.58E-03	1.12E-04	0	1.62E-04	4.34E-04	2.39E-02	0	0	2.80E-01	1.42E-05	3.13E-01
Intermediate- and low-level radioactive waste, conditioned, to final repository (ILLRW)	kg	1.43E-03	6.09E-05	0	1.53E-07	2.76E-04	4.17E-03	0	0	9.39E-01	3.04E- 05	9.45E-01
Components for re-use (CRU)	kg	0	0	0	0	0	0	0	0	0	0	0
Materials for recycling (MR)	kg	5.13E+00	1.51E+00	0	0	0	1.83E+01	0	0	0	0	2.49E+01
Materials for energy recovery (MER)	kg	5.29E-02	0	0	0	0	1.45E-01	0	0	0	0	1.98E-01
Exported energy (EE)	MJ	9.72E-01	0	0	0	0	2.67E+00	0	0	0	0	3.64E+00
Carbon emissions and remova Biogenic Carbon Removal from Product (BCRP)	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0
Biogenic Carbon Emission from Product (BCEP)	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0
Biogenic Carbon Removal from Packaging (BCRK)	kg CO ₂	3.47E+00	0	0	0	0	9.53E+00	0	0	0	0	1.30E+01
Biogenic Carbon Emission from Packaging (BCEK)	kg CO ₂	0	2.90E+00	0	0	0	8.00E+00	0	0	0	1.19E-02	1.09E+01
Biogenic Carbon Emission from Combustion of Waste from Renewable Sources Used in Production Processes (CBCEW)	kg CO ₂	0	1.28E-01	0	0	0	3.53E-01	0	0	0	0	4.80E-01
Calcination Carbon Emissions (CCE)	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0
Carbonation Carbon Removals (CCR)	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0
Carbon Emissions from Combustion of Waste from Non-Renewable Sources used in Production Processes (CWNR)	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0

PROFLO® Calhoun 1500 Series Two-piece Toilet 1.28 gpf - LCIA results per functional unit

Impact category	Unit	A1-A3	A4	А5	B1	B2	вз	В4	В5	В6	B7	C1	C2	СЗ	C4	Total
Ozone depletion	kg CFC-11 eq	1.03E-06	5.52E-07	4.79E- 08	0	3.70E-08	3.31E-08	7.27E-06	0	0	4.89E-05	0	9.80E-07	0	2.96E- 08	5.89E-05
Global warming	kg CO2 eq	6.32E+01	1.04E+01	6.81E- 01	0	2.18E+00	2.35E+00	2.19E+02	0	0	1.03E+03	0	4.88E+00	0	5.91E- 01	1.33E+03
Smog	kg O3 eq	3.93E+00	3.38E+00	4.01E- 02	0	1.44E-01	1.10E-01	2.25E+01	0	0	4.19E+01	0	7.93E-01	0	5.04E- 02	7.29E+01
Acidifi- cation	kg SO2 eq	2.57E-01	1.72E-01	1.42E- 03	0	2.27E-02	7.93E-03	1.26E+00	0	0	4.89E+00	0	2.69E-02	0	1.78E- 03	6.64E+00
Eutrophi- cation	kg N eq	2.40E-02	7.13E-03	8.02E- 04	0	3.08E- 02	7.29E-04	9.72E-02	0	0	1.36E+01	0	2.76E-03	0	6.36E- 04	1.37E+01
Carcino- genics	CTUh	2.59E-07	3.35E-08	5.11E- 10	0	6.23E-08	1.15E-08	8.12E-07	0	0	3.67E-05	0	1.40E-09	0	7.49E- 10	3.79E-05
Non- carcino- genics	CTUh	5.84E-06	5.00E-07	1.47E- 08	0	3.07E-06	7.45E-08	1.81E-05	0	0	7.43E-04	0	2.33E-07	0	5.24E- 09	7.70E-04
Respiratory effects	kg PM2.5 eq	4.19E-02	9.53E-03	1.60E- 04	0	3.46E-03	1.17E-03	1.51E-01	0	0	2.71E-01	0	3.14E-03	0	2.22E- 04	4.82E-01
Additional e	nvironme	ntal informa	tion													
Ecotoxicity	CTUe	5.94E+01	7.67E+00	4.87E- 02	0	8.22E+01	1.18E+00	1.87E+02	0	0	1.75E+03	0	6.28E-01	0	3.69E- 01	2.09E+03

Fossil fuel depletion	MJ	8 27E+01	1 89E+01	4.65E-	0	122E+00	5 33E+00	3 08E+02	0	0	127E+03	0	9.41E+00	0	3.73E-	1 70E+03
depletion	surplus	0.272.01	1.032.01	01	0	1.221.00	J.JJL 00	5.00L+02	0	0	1.27 L 00	0	J.412 00	0	01	1.702.05

PROFLO® Calhoun 1500 Series Two-piece Toilet 1.6 gpf - LCIA results per functional unit

Impact category	Unit	A1-A3	A4	А5	B1	B2	B3	В4	B5	В6	B7	C1	C2	C3	C4	Total
Ozone depletion	kg CFC-11 eq	1.06E-06	8.68E-07	4.80E- 08	0	3.70E-08	3.65E-08	8.31E-06	0	0	6.12E-05	0	1.02E-06	0	3.07E- 08	7.26E-05
Global warming	kg CO2 eq	6.51E+01	1.23E+01	6.82E- 01	0	2.18E+00	2.52E+00	2.30E+02	0	0	1.29E+03	0	5.07E+00	0	6.03E- 01	1.61E+03
Smog	kg O3 eq	4.06E+00	3.63E+00	4.01E- 02	0	1.44E-01	1.18E-01	2.37E+01	0	0	5.23E+01	0	8.24E-01	0	5.23E- 02	8.48E+01
Acidifi- cation	kg SO2 eq	2.65E-01	1.83E-01	1.42E- 03	0	2.27E-02	8.56E-03	1.32E+00	0	0	6.11E+00	0	2.80E-02	0	1.85E- 03	7.94E+00
Eutrophi- cation	kg N eq	2.45E-02	8.01E-03	8.03E- 04	0	3.08E- 02	7.87E-04	1.01E-01	0	0	1.69E+01	0	2.87E-03	0	6.55E- 04	1.71E+01
Carcino- genics	CTUh	2.64E-07	3.54E-08	5.11E- 10	0	6.23E-08	1.23E-08	8.30E-07	0	0	4.59E- 05	0	1.45E-09	0	7.72E- 10	4.71E-05
Non- carcino- genics	CTUh	5.98E-06	5.73E-07	1.48E- 08	0	3.07E-06	8.15E-08	1.87E-05	0	0	9.28E- 04	0	2.42E-07	0	5.38E- 09	9.57E-04
Respiratory effects	kg PM2.5 eq	4.32E-02	1.02E-02	1.60E- 04	0	3.46E-03	1.27E-03	1.57E-01	0	0	3.39E-01	0	3.27E-03	0	2.30E- 04	5.58E-01
Additional environmental information																
Ecotoxicity	CTUe	6.12E+01	8.55E+00	4.87E- 02	0	8.22E+01	1.27E+00	1.95E+02	0	0	2.18E+03	0	6.52E-01	0	3.71E- 01	2.53E+03
Fossil fuel depletion	MJ surplus	8.46E+01	2.24E+01	4.66E- 01	0	1.22E+00	5.74E+00	3.24E+02	0	0	1.59E+03	0	9.78E+00	0	3.88E- 01	2.04E+03

\$

FDD

SM Transparency Report (EPD)™ + Material Health Overview™

	LCA
3rd-party reviewed	♥
Transparency I	Report (EPD)
3rd-party verified	0
Validity: 08/13/2024 – 08 FER – 20240813 – 002	8/12/2029
MATERIAL HEALTH	Material evaluation
Self-declared	<

ICA

This environmental product declaration (EPD) was externally verified by Industrial Ecology Consultants, according to ISO 21930:2017; SM Part A; SM Part B: Residential toilets; and ISO 14025:2006.

Industrial Ecology Consultants 35 Bracebridge Rd Newton, MA 02459 www.industrial-ecology.com (617) 553-4929

Industrial Ecology Consultants

SUMMARY Reference PCR

SM Part B: Residential toilets, v3.0

Regions; system boundaries North America; Cradle-to-grave

Functional unit

One residential toilet in an average residential environment used over the estimated service of the building

LCIA methodology; LCA software; LCI database

TRACI 2.1; SimaPro Analyst 9.5; ecoinvent v3.10 and US-EI 2.2 databases

Public LCA

LCA background report of Ferguson single handle lavatory faucets & residential two-piece toilets

© 2024 | The SM Transparency Report [EPD]** Program is operated by Sustainable Minds* (www.sustainableminds.com) | Privacy policy

FERGUSON

751 Lakefront Commons Newport News, VA 23606 (800) 221-3379

Contact us

PERFORMANCE DASHBOARD 2 LCA & MATERIAL RESULTS & INTERPRETATION 3 HOW WE MAKE IT GREENER

S.

SM Transparency Catalog
Ferguson
PROFLO® Calhoun 1500 Series Toilet

%FERGUSON

LCA & material health results & interpretation

PROFLO® Calhoun 1500 Series Toilet

Sustainable Minds

insparency Report (EPD)

Material health

Evaluation programs

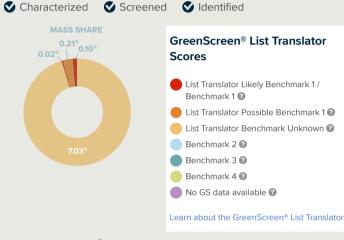
The Health Product Declaration®

The HPD Open Standard provides a consistent, and transparent format to accurately disclose the material contents and associated hazard classifications for a building product.

How it works

Material ingredients are screened and categorized according to the hazards that international governmental bodies and toxicology experts have associated with them, based on two listings:

- Authoritative lists maintained or recognized by government bodies
- Screening lists, which include chemicals that government bodies determined need further scrutiny, as well as chemical lists not recognized by any government body.


Assessment scope and results

Health Product Declaration®

PROFLO® Calhoun 1500 Series Toilet

Inventory threshold: 1000ppm Full disclosure known hazards: Yes

Based on the selected content inventory threshold:

Total VOC Content®

VOC Content data is not applicable for this product category.

References

Health Product Declaration®

PROFLO® Calhoun 1500 Series Toilet

Health Product Declaration Open Standard - all versions

The standard provides guidance to accurately disclose the material contents of a building product using a standard, consistent, and transparent format.

What's in this product and why

The primary ingredient for this product is ceramic material which contributes to the bulk of toilet tank and toilet bowl. Ceramics is a geological material, meets HPDC special conditions policy, and hazard screening is not applicable. There are some substances used in non-ceramic toilet components that show higher human health hazards as indicated in Pharos chemical and materials library. Some substances also appear on additional listings like Restricted list of Perkins & Will and Cradle to Cradle Products Innovation Institute (C2CPII), but this share is minimal.

Only about 0.3% of the product mass is scored either Benchmark 1 (BM1) or Possible Benchmark 1 (LT-P1). However, the user should not be concerned about interaction with the product. The hazards posed by alloy substances in the flush fittings are generally safe in their alloyed forms and the risk of exposure to harmful levels of these substances from regular use of toilet is extremly low. On the other hand, ingredients of rubber are chemically bound and are stable in the formation of rubber, so do not pose risk to human health.

How we're making it healthier

Rubber rings degrade and can release volatile compounds over time. These are suggested to be replaced every 20 years which minimizes such possibility. Corrosion of metals could also release small amount of metals into the surrounding environment. The metal parts are to be replaced if there is any significant rust or degradation.

See how we make it greener

Rating systems

LEED BD+C: New Construction | v4 - LEED v4

Building product disclosure and optimization **Material Ingredients**

Credit value options		1 product each
🔮 1. Reporting	O 2. Optimization	3. Supply Chain Optimization

LEED BD+C: New Construction | v4.1 - LEED v4.1 Materials and resources **Material Ingredients**

Credit value options		1 product each
1. Reporting	O 2. Optimization	3. Supply Chain Optimization
Living Buildir Materials pet	ng Challenge als imperatives	
10. Red List Free	12. Responsible Indu	stry 🔿 13. Living Economy Sourcing
WELL Buildin Air and Mind	•	
X07 Materials Tr	ansparency	
X08 Materials O	ptimization	
Criteria	for High Perfor	mance Schools National
-		osures
Performance Ap	proach	2 points
Prescriptive App	roach	2 points

SM Transparency Report (EPD)™ + Material Health Overview™

EPD	LCA					
3rd-party reviewed	♥					
Transparency I	Report (EPD)					
3rd-party verified	S					
Validity: 08/13/2024 – 08/12/2029 FER – 20240813 – 002						
MATERIAL HEALTH	Material evaluation					
Self-declared	S					

This environmental product declaration (EPD) was externally verified by Industrial Ecology Consultants, according to ISO 21930:2017; SM Part A; SM Part B: **Residential toilets; and ISO** 14025:2006.

Industrial Ecology Consultants 35 Bracebridge Rd Newton, MA 02459

(617) 553-4929

SUMMARY

Reference PCR

Regions; system boundaries North America; Cradle-to-grave

Functional unit One residential toilet in an average residential environment used over the estimated service of the building

LCIA methodology; LCA software; LCI database TRACI 2.1; SimaPro Analyst 9.5;

ecoinvent v3.10 and US-EI 2.2 databases

Public LCA

FERGUSON

751 Lakefront Commons Newport News, VA 23606 (800) 221-3379

Contact us

1 PERFORMANCE DASHBOARD 2 LCA & MATERIAL RESULTS & INTERPRETATION 3 HOW WE MAKE IT GREENER

Download PDF

PROFLO® Calhoun 1500 Series Toilet

How we make it greener

Expand all

PRODUCTION


During the production of toilets, unqualified semi-finished and finished products can be almost 100% recycled, and unqualified wet billet can be directly returned to the batching workshop to prepare new mud. Ceramics are directly crushed and reused for mud preparation where possible.

Current Ferguson production processes mainly use natural gas. However, the use of solar power is under consideration to promote sustainable development. The local government in the area where the toilet production facility is located has begun the construction of solar power generation systems, which will be used in the production of sanitary ceramics in order to reduce the use of natural gas and other energy inputs.

TRANSPORTATION

Ferguson is making efforts to reduce the total transportation distance required for its upstream transportation and distribution activities. These efforts include local sourcing and the use of multiple distribution centers.

For example, the main raw materials used in sanitary ceramic production are washed mud, feldspar, and porcelain stone powder. These raw materials are sourced from locations close to the manufacturing facility, and the port for shipment to the US is close by.

END OF LIFE

Ferguson is working to make end-of-life disposal pathways more sustainable for all its product offerings across multiple product categories. For example, waste sanitary ceramics can be broken into ceramic fragments or powder, which can be used to manufacture building materials such as ceramic tile adhesives and cement additives.

Processing waste sanitary ceramics into fine particles can produce raw materials for the production of green building materials, such as concrete additives used for environmentally friendly lightweight partition panels, road bricks, etc. While this is not yet commonplace, these practices would reduce the emissions associated with landfill and improve the potential environmental performance of building materials.

SM Transparency Report (EPD)™ + Material Health Overview™

EPDLCA3rd-party reviewedTransparency Report (EPD)3rd-party verified3rd-party verifiedPalidity: 08/13/2024 – 08/12/2029
FER – 20240813 – 002MaterialMATERIAL HEALTHMaterial

Self-declared

This environmental product declaration (EPD) was externally verified by Industrial Ecology Consultants, according to ISO 21930:2017; SM Part A; SM Part B: Residential toilets; and ISO 14025:2006.

Industrial Ecology Consultants 35 Bracebridge Rd Newton, MA 02459 www.industrial-ecology.com

(617) 553-4929

SUMMARY

Reference PCR SM Part B: Residential toilets, v3.0

Regions; system boundaries North America; Cradle-to-grave

Functional unit One residential toilet in an average residential environment used over the estimated service of the building

LCIA methodology; LCA software; LCI database TRACI 2.1; SimaPro Analyst 9.5; ecoinvent v3.10 and US-EI 2.2

databases
Public LCA

LCA background report of Ferguson single handle lavatory faucets & residential two-piece toilets

FERGUSON

751 Lakefront Commons Newport News, VA 23606 (800) 221-3379

Contact us

© 2024 I The SM Transparency Report [EPD][™] Program is operated by Sustainable Minds[®] (www.sustainableminds.com) | Privacy