SM Transparency Catalog ▶ Manson Insulation ▶ Akousti-Board Black™

# MANSON INSULATION

#### Akousti-Board Black™

Manson Insulation Akousti-Board Black $^{\mathbb{M}}$  is a heavy density board insulation. The base board is brown with a black nonwoven facer.

Akousti-Board Black™ is designed for use as acoustical insulation and/or visual barrier on walls and ceilings, where system design requires a rigid product and where additional strength and abuse resistance are required. The black surface provides a visual barrier with an aesthetic appearance, in both wall and ceiling applications. The product is typically used where framing members are not present.



# Performance dashboard



#### Features & functionality

Provides acoustical and thermal insulation to walls and ceilings of theaters, auditoriums, office spaces, etc.

Significantly reduces noise through outstanding sound absorption

Aesthetically pleasing and can be used as a visual barrier

Rigid product for excellent smooth surface appearance

# Visit Manson for more product information

#### **Environment & materials**

#### Improved by:

Utilization of recycled glass Knauf's original plant-based bio-based binder

technology Optimized compression packaging

## **Certification & rating systems:**

UL GREENGUARD Gold certified

UL Validated recycled content

UL Validated formaldehyde-free

Audited, European Certification Board for Mineral Wool Products exoneration process

ASTM C612; Type IA and Type IB

## CSI MasterFormat® 07 21 13

Thermal Insulation Guide Specification For spec help, contact us or call 317 421 8727



Download all documents

#### See LCA, interpretation & rating systems







# SM Transparency Report (EPD)™

VERIFICATION

LCA

3rd party reviewed

**V** NSF

Transparency Report (EPD)

3rd party verified



Validity: 2018/12/03 – 2023/12/03 MAN – 20181203 – 002 This declaration was independently verified by NSF to ISO 21930:2017, EN 15804, the UL Environment PCR, and ISO 14025:2006.

NSF International

P.O Box 130140 789 N.Dixboro Road Ann Arbor, MI 48105, USA www.nsf.org 734 769 8010



#### SUMMARY

#### Reference PCR

UL Building Envelope Thermal Insulation, 04/18 – 02/23

Regions; system boundaries

North America; Cradle to grave

#### Functional unit / reference service life:

1 m<sup>2</sup> of installed insulation w/packaging; thickness that gives an avg thermal resistance of RSI = 1 m<sup>2</sup>·K/W over 75 years.

LCIA methodology: TRACI 2.1

LCA software; LCI database

GaBi 7; GaBi 2017

LCA conducted by: Sustainable Minds

Public LCA: Knauf and Manson Products

#### Manson Insutation

One Knauf Drive Shelbyville, IN 46176 www.imanson.com 317 398 4434



# LCA results & interpretation

Akousti-Board Black™

Life cycle assessment

#### Scope and summary

#### **Application**

Designed for use in North America as acoustical insulation and/or a visual barrier on walls and ceilings, where system design requires a rigid product and where additional strength and abuse resistance are required. The black surface provides a visual barrier with an aesthetic appearance, in both wall and ceiling applications. Akousti-Board Black $^{\mathbb{M}}$  is a versatile product fitting for a variety of acoustical applications such as office partitions, interior panels, and sound baffles in North America.

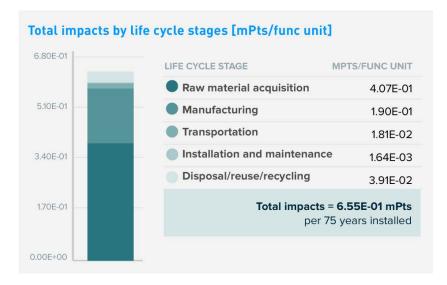
Insulation is delivered to the installation site as one packaged bag containing varying amounts of product.

#### **Functional unit**

**Reference service life: 75 years.** One square meter of installed insulation material, packaging included, with a thickness that gives an average thermal resistance of

 $R = 1m^2 \cdot K/W$  over a period of 75 years.

**Reference flow:** 3.20 kg of product with no facing options, at a thickness of 0.320 m to achieve the functional unit. (ASTM C518)


#### **Manufacturing data**

Reporting period: October 2015 – September 2016 Location: Shelbyville, IN

# Default installation, packaging, and disposal scenarios

At the installation site, insulation products are unpackaged and installed. Staples may be used to install board products. No material is lost or wasted because scraps are typically used to fill corners or crevices. Packaging waste, made up of paper and plastic, is disposed (plastic: 15% to recycling, 68% to landfill, and 17% to incineration; paper: 75% to recycling, 20% to landfill, and 5% to incineration), and no maintenance or replacement is required to achieve the product's life span. After removal, the insulation is assumed to be landfilled.

| Material compositio | n greater than 1% by weight |           |
|---------------------|-----------------------------|-----------|
| PART                | MATERIAL                    | AVG % WT. |
| Batch               | Post-consumer cullet        | 59.0%     |
| Batch               | Internal cullet             | 11.0%     |
| Batch               | Sand                        | 8.1%      |
| Batch               | Borax                       | 7.0%      |
| Batch               | Soda ash                    | 3.2%      |
| Batch               | Sugars                      | 2.5%      |
| Batch               | Limestone                   | 2.3%      |
| Packaging           | Plastic film                | 1.4%      |
| Batch               | Dolomite                    | 1.2%      |
| Batch               | Nepheline syenite           | 1.2%      |
| Facing              | Facing adhesive             | 1.8%      |
|                     | Other                       | 1.8%      |
|                     |                             |           |



## What's causing the greatest impacts

#### All life cycle stages

The manufacturing stage dominates the results for all impact categories except for eutrophication, respiratory effects, and non-carcinogenics.

The raw materials acquisition stage dominates the results for eutrophication and respiratory effects, and the disposal stage dominates the results for non-carcinogenics. The impact of the raw material acquisition stage is mostly due to the borax, manganese dioxide, and soda ash in the batch and the dextrose in the binder. Since sand and borax are melted in the oven, they are not released into the air as fine particulates and therefore likely actually contribute less than what is calculated in the results tables below. The manufacturing stage shows major contributions to all impact categories. For smog and ecotoxcity, the transportation stage was the second highest contributor to the results; the contributions to outbound transportation are caused by the use of trucks and rail transport. For carcinogenics, the disposal stage was the second highest contributor to the results; the landfilling of the discarded product contributes to the disposal stage. The only impacts associated with installation and maintenance are due to the disposal of packaging waste, which is the smallest contributor to the results.

#### Manufacturing stage

The energy required to melt the glass and produce the glass fibers is the largest contributor to the manufacturing stage for all impact categories.

#### Characterized vs. single score results

Due to normalization and weighting, different stages can dominate the characterized and single score results. The batch ingredients sand and borax contribute significantly to the respiratory effects category, causing the raw materials acquisition stage to dominate the mPt results, but not the characterized results. However, they are not released into the air as fine particulates and therefore likely actually contribute less than what is calculated in the raw material acquisition stage. What this means is that the manufacturing stage may have a larger share of the impact than what is displayed in the total impacts by life cycle stage.

## Sensitivity analysis

The deviation between these two products is the addition of a black mat layer on the Black Acoustical Board. However, there is no significant impact on any of the impact categories due to this deviation.

## Multi-product weighted average

Results represent the weighted average using production volumes for the products covered. Variations of specific products for differences of 10–20% against the average are indicated in purple; differences greater than 20% are indicated in red. A difference greater than 10% is considered significant.

# How we're making it greener

Knauf and Manson are committed to providing products that conserve energy and preserve natural resources.

- These products use ECOSE® Technology, which is a plant-based binder adhesive instead of a fossil fuel based binder. ECOSE Technology represents a fossil fuel avoidance equivalent of 100,000 barrels of oil a year for Manson and Knauf Insulation products
- combined.
  - Our product contains a high degree of recycled content, which
- translates to 20% less glass melting energy and a 25% reduction in embodied carbon. Our utilization of recycled content reduces mining impacts by 60%. In fact, Knauf and Manson products combined use
- 10 railcars of recycled glass a day.
   All glass fiber made by Manson and Knauf is audited by a 3rd party to ensure biosoluble chemistry from a health and safety standpoint.

See how we make it greener

# **LCA** results

| LIFE CYCLE STAGE                                                                | RAW MATERIAL<br>ACQUISITION | MANUFACTURING    | TRANSPORATION                 | INSTALLATION AND MAINTENANCE     | DISPOSAL/REUSE/<br>RECYCLING     |
|---------------------------------------------------------------------------------|-----------------------------|------------------|-------------------------------|----------------------------------|----------------------------------|
| Information modules: Included   Excluded*  *In the installation and maintenance | A1 Raw Materials            | A3 Manufacturing | A4 Transporation/<br>Delivery | A5 Construction/<br>Installation | C1 Deconstruction/<br>Demolition |
| phase, packaging waste in module A5                                             | A2 Transportation           |                  |                               | B1 Use                           | C2 Transporation                 |
| is the only contributor to the potential impacts.                               |                             |                  |                               | B2 Maintenance                   | C3 Waste Processing              |
|                                                                                 |                             |                  |                               | B3 Repair                        | C4 Disposal                      |
|                                                                                 |                             |                  |                               | B4 Replacement                   |                                  |
|                                                                                 |                             |                  |                               | B5 Refurbishment                 |                                  |
|                                                                                 |                             |                  |                               | B6 Operational energy use        |                                  |
|                                                                                 |                             |                  |                               | B7 Operational water use         |                                  |
|                                                                                 |                             |                  |                               |                                  |                                  |

# **SM 2013** Learn about SM Single Score results

| Impacts per 75 years of service                                                    | 4.07E-01 mPts                                  | 1.90E-01 mPts                                                            | 1.81E-02 mPts                                                             | 1.64E-03 mPts                                                    | 3.91E-02 mPts                                          |
|------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|
| Materials or processes contributing >20% to total impacts in each life cycle stage | Batch material and binder material production. | Energy required<br>to melt the glass<br>and produce the<br>glass fibers. | Truck and rail transportation used to transport product to building site. | Transportation to disposal and disposing of packaging materials. | Transportation to landfill and landfilling of product. |

| LIFE CYCLE STAGE                    |                         |   | RAW MATERIAL ACQUISITION | MANUFACTURING | TRANSPORTATION | INSTALLATION AND MAINTENANCE | DISPOSAL/REUSE/<br>RECYCLING |
|-------------------------------------|-------------------------|---|--------------------------|---------------|----------------|------------------------------|------------------------------|
| Ecological dama                     | ge                      |   |                          |               |                |                              |                              |
| Impact category                     | Unit                    |   |                          |               |                |                              |                              |
| Acidification                       | kg SO₂ eq               | ? | 6.43E-03                 | 1.95E-02      | 4.80E-03       | 3.43E-05                     | 1.21E-03                     |
| Eutrophication                      | kg N eq                 | ? | 1.16E-03                 | 9.64E-04      | 3.84E-04       | 8.53E-06                     | 7.13E-05                     |
| Global warming<br>(Embodied carbon) | kg CO₂ eq               | ? | 1.07E+00                 | 8.14E+00      | 8.97E-01       | 5.78E-02                     | 2.63E-01                     |
| Ozone depletion                     | kg CFC-11 eq            | ? | 4.63E-10                 | 3.09E-09      | 6.19E-12       | 3.85E-11                     | 3.49E-12                     |
| Human health d                      | amage                   |   |                          |               |                |                              |                              |
| Impact category                     | Unit                    |   | _                        |               |                |                              |                              |
| Carcinogenics                       | CTU <sub>h</sub>        | ? | 4.39E-10                 | 1.34E-09      | 4.75E-10       | 1.62E-11                     | 8.77E-10                     |
| Non-carcinogenics                   | CTU <sub>h</sub>        | ? | 2.92E-08                 | 7.98E-08      | 3.53E-08       | 2.04E-09                     | 9.84E-08                     |
| Respiratory effects                 | kg PM <sub>2.5</sub> eq | ? | 7.05E-03                 | 2.83E-03      | 2.50E-04       | 2.51E-05                     | 6.63E-04                     |
| Smog                                | kg O₃ eq                | ? | 1.06E-01                 | 2.02E-01      | 1.61E-01       | 7.20E-04                     | 2.79E-02                     |

| Impact category       | Unit             |   |          |          |          |          |          |
|-----------------------|------------------|---|----------|----------|----------|----------|----------|
| Ecotoxicity           | CTU <sub>e</sub> | ? | 1.05E-01 | 1.99E-01 | 1.12E-01 | 6.89E-04 | 2.57E-02 |
| Fossil fuel depletion | MJ, LHV          | ? | 1.87E+00 | 8.30E+00 | 1.70E+00 | 1.23E-02 | 5.20E-01 |

#### References

#### **LCA Background Report**

Knauf Insulation and Manson Insulation Products LCA Background Report (public

version), Knauf 2018. GaBi 7, GaBi 2017 database.

#### PCP o

ISO 21930:2017 serves as the core PCR along with EN 15804 and UL Part A.

# **ULE PCR Part A: Life Cycle Assessment Calculation Rules and Report Requirements v3.1**

May 2, 2018. Technical Advisory Panel members reviewed and provided feedback

on content written by UL Environment and USGBC. Past and present members of

the Technical Advisory Panel are listed in the PCR.

#### **ULE PCR Part B: Building Envelope Thermal Insulation**

Version 2.0, April 2018. PCR review conducted by Thomas Gloria, PhD (chair, t.gloria@industrial-ecology.com); Andre Desjarlais; and Christoph Koffler, PhD.

**ULE General Program Instructions v2.1, April 2017** 

ISO 14025, "Sustainability in buildings and civil engineering works -- Core rules for environmental product declarations of construction products and services", ISO21930:2017

SM Transparency Reports (TR) are ISO 14025 Type III environmental declarations (EPD) that enable purchasers and users to compare the potential environmental performance of products on a life cycle basis. They are designed to present information transparently to make the limitations of comparability more understandable. TRs/EPDs of products that conform to the same PCR and include the same life cycle stages, but are made by different manufacturers, may not sufficiently align to support direct comparisons. They therefore, cannot be used as comparative assertions unless the conditions defined in ISO 14025 Section 6.7.2. 'Requirements for Comparability' are satisfied. Comparison of the environmental performance of building envelope thermal insulation using EPD information shall be based on the product's use and impacts at the building level, and therefore EPDs may not be used for comparability purposes when not considering the building energy use phase as instructed under the PCR. Full conformance with the PCR for building envelope thermal insulation allows EPD comparability only when all stages of a life cycle have been considered, when they comply with all referenced standards, use the same sub-category PCR, and use equivalent scenarios with respect to construction works. However, variations and deviations are possible. Example of variations: Different LCA software and background LCI data sets may lead to different results upstream or downstream of the life cycle stages declared.

### **Rating systems**

The intent is to reward project teams for selecting products from manufacturers who have verified improved life-cycle environmental performance.

#### LEED BD+C: New Construction | v4 - LEED v4

Building product disclosure and optimization **Environmental product declarations** 

Industry-wide (generic) EPD ½ product

Product-specific Type III EPD 1 product

# **Green Globes for New Construction and Sustainable Interiors Materials and resources**

NC 3.5.1.2 Path B: Prescriptive Path for Building Core and Shell

Collaborative for High Performance Schools National Criteria

C 3.5.2.2 and SI 4.1.2 Path B: Prescriptive Path for Interior Fit-outs

Third-party certified type III EPD

**MW 7.1 – Environmental Product Declarations** 

2 points

# SM Transparency Report (EPD)™

VERIFICATION

LCA

3rd party reviewed

Transparency Report (EPD)

3rd party verified



Validity: 2018/12/03 – 2023/12/03 MAN – 20181203 – 002 This declaration was independently verified by NSF to ISO 21930:2017, EN 15804, the UL Environment PCR, and ISO 14025:2006.

P.O Box 130140

789 N.Dixboro Road Ann Arbor, MI 48105, USA www.nsf.org

734 769 8010



#### **SUMMARY**

Reference PCR

UL Building Envelope Thermal Insulation, 04/18 – 02/23

Regions; system boundaries

North America; Cradle to grave

Functional unit / reference service life:

1 m $^2$  of installed insulation w/packaging; thickness that gives an avg thermal resistance of RSI = 1 m $^2$ ·K/W over 75 years.

LCIA methodology: TRACI 2.1

LCA software; LCI database

GaBi 7; GaBi 2017

LCA conducted by: Sustainable Minds

**Public LCA:** Knauf and Manson Products

**Manson Insutation**One Knauf Drive

Shelbyville, IN 46176 www.imanson.com 317 398 4434

SM Transparency Catalog ▶ Manson Insulation ▶ Akousti-Board Black™

# How we make it greener

Akousti-Board Black™

See LCA results by life cycle stage

# RAW MATERIAL ACQUISITION



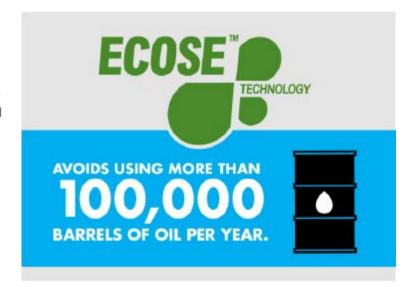
#### **Utilize recycled content**

Our plants use 60-80% recycled content – which translates to about 10 railcars of recycled glass cullet a day. By leveraging so much recycled content, we reduce the energy required to form glass fibers by 20%. If we use even 60% recycled content, then mining impacts are reduced proportionately.

#### Pursue sequestration potential

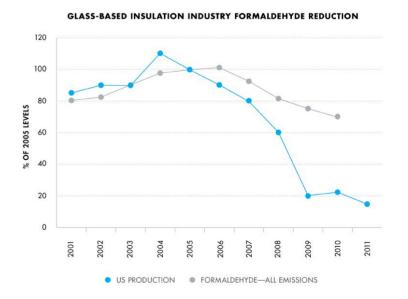
Manson and Knauf's bio-based ECOSE Technology is derived from corn. On average, the Knauf Family Farm produces one half the amount of corn we use to make our products on an annual basis, which is equal to 5,000 acres. While we don't grow the corn used in our products, the use of corn has a significant carbon sequestration impact on our processes. For instance, the use of corn actually offsets the carbon impact of some of the ancillary facers used on our products.





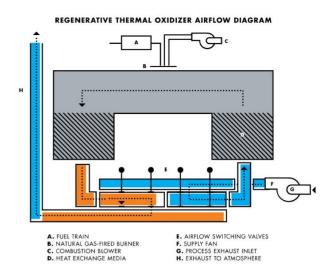

# MANUFACTURING

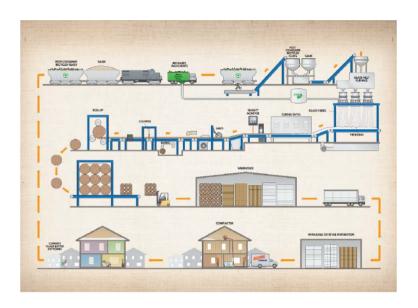
#### Develop bio-based formaldehyde-free binder


In 2008, Knauf Insulation launched perhaps the nation's largest formaldehyde-free green chemistry initiative called ECOSE Technology. Offering this into the building materials marketplace quickly transformed the entire glass mineral fiber industry toward bio-based chemistries. Today phenol-formaldehyde (PF) based resins are largely a thing of the past with regard to large volume mineral fiber based insulation products. Knauf has also launched a new business venture to assist other industries in accessing ECOSE Technology for their processes.

In a given year, using corn-based ECOSE Technology instead of phenol & formaldehyde avoids the equivalent of more than 100,000 barrels of oil in North America alone.




## Lead green chemistry efforts


Following the launch of our ECOSE Technology in 2009, we had transformed all of our products and processes to this new technology. Using our bio-based ECOSE Technology has removed phenol and formaldehyde from our stack emissions. By 2012, the entire industry had followed our lead. This initiative not only established Knauf Insulation in a leadership position, but it had a transformative impact on our industry in general.



## **Green manufacturing Processes**

- 1. Regenerative thermal oxidizers Knauf Insulation uses regenerative thermal oxidizers (RTO) to capture and recycle much of the energy we used to cure our products. RTO is equipment used for the treatment of exhaust air. Our ovens exhaust into a ceramic heat exchange media to capture and reuse the heat in the exhausted air. Therefore, the amount of energy required to cure our product is reduced substantially.
- **2. Recycling** As you can see below, everything we do starts with recycling. Our plant uses as much as 80% recycled content. While our only option is to landfill our products at end of life, that doesn't stop us from encouraging consumers to recycle other products, particularly glass bottles.

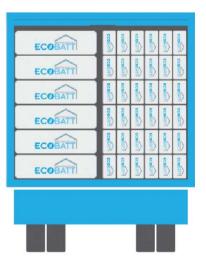




#### **Continuous Improvement**

Continuous improvement is key to our sustainable development. Globally, we maintain the following Bureau Veritas certifications: ISO 9000, 14000, and 50001. These certifications relate to quality management systems, energy management and environmental management efforts. For more information on our current continuous improvement efforts, please review our global sustainability report.

# MANUFACTURING




## Leverage compression packaging

Glass is a high modulus material, which helps to facilitate compression packaging. We compress our insulation to fit up to five times more product on every truck. This compression means:

- More material can fit on one truck when compared to other insulation materials
- Fewer packages on a job
- Fewer deliveries needed







#### Be confident in glass mineral wool's safety

In the past, a label regarding the carcinogenic potential of insulation made from glass fibers was required on all packaging. Following forty years of research, glass mineral wool has been exonerated entirely. Glass mineral wool is comprised of fibers that are biosoluble, meaning that the fibers dissolve in the body in a short period of time and exit the body with normal bodily functions. The scrutiny glass mineral wool has undergone is now seen as proof of its safety.

#### Meet and exceed green standards

**GREENGUARD** certified On the forefront of indoor air quality, Knauf Insulation was the first GREENGUARD certified product in 2002. This achievement led us to understand the impact our formaldehyde-free products could have on the indoor environment. The formaldehyde-free claim is third party validated by UL Environment.

Red List Free Since 2012, Knauf Insulation North America used the Living Building Challenge (LBC) Red List as its developmental benchmark. The Red List is a list of chemicals that are avoided in material imperative for the construction of LBC buildings. Formaldehyde is just one of about 800 chemicals on the Red List. Manson Insulation has chosen the Health Product Declaration® (HPD) Collaborative as its standard for reporting building product content and associated health information.

**EUCEB tested** Glass fiber is perhaps the most widely studied building material available today. All of our processes and formulations are voluntarily third-party audited for compliance with the health and safety exoneration criteria for glass and rock based fiber through the European Certification Board for Mineral Wool Products (EUCEB) exoneration process. This guarantees the formulations are biosoluble and pose no health concerns. Having 35 years of research behind its safety, perhaps no other building material has been as thoroughly evaluated as fiberglass products. We believe a safe product is one that has been thoroughly evaluated.

#### **Green building rating systems**

Our products offer a vast array of potential credits for major green building rating systems, including: WELL, LEED v4, International Green Construction Code, Green Guide for Heath Care, NAHB Green Building Standard and more.

Visit the green building rating systems page to see all the credits you can earn using Manson and Knauf Insulation products.

Green building rating system credits Find out all the credits you can earn with Knauf products.

Learn more





## **Promote Recycling**

Manson and Knauf are recycling advocates. We take every opportunity to advocate for recycling and financially support the Glass Recycling Coalition (GRC). We feel that a comprehensive understanding of the benefits of recycling will lead to greater recycling adoption and more promotion by state and local governments. While our only option is to landfill our products at end of life, that doesn't stop us from encouraging consumers to recycle other products, particularly glass bottles.







LCA

3rd party reviewed

NSF.

Transparency Report (EPD)

3rd party verified



Validity: 2018/12/03 - 2023/12/03 MAN - 20181203 - 002

This declaration was independently verified by NSF to ISO 21930:2017, EN 15804, the UL Environment PCR, and ISO 14025:2006.

**NSF** International P O Boy 130140 789 N.Dixboro Road Ann Arbor, MI 48105, USA

734 769 8010

## **SUMMARY**

Reference PCR **UL Building Envelope Thermal Insulation,** 04/18 - 02/23

Regions; system boundaries North America; Cradle to grave

Functional unit / reference service life: 1 m<sup>2</sup> of installed insulation w/packaging; thickness that gives an avg thermal resistance of RSI = 1 m<sup>2</sup>·K/W over 75 years.

LCIA methodology: TRACI 2.1

GaBi 7; GaBi 2017

LCA conducted by: Sustainable Minds **Public LCA: Knauf and Manson Products** 

LCA software; LCI database

**Manson Insutation** One Knauf Drive Shelbyville, IN 46176 317 398 4434

# Additional EPD content required by: ULE PCR Parts A and B for Building Envelope Thermal Insulation

Akousti-Board Black™

#### Data

Sustainable Minds®

Transparency Report

Background This company-specific product/product group specific declaration was created by collecting product data over the course of a year for each line at each location the product was manufactured. For products with multiple manufacturing locations, data are a weighted average by production volume at each location. For average products, which are products that have more than one facing option, data are a weighted average of the mass of each functional unit. The reference service life applies for the reference in-use conditions only.

Allocation Since only facility-level data were available, allocation among a facility's co-products was used to determine the input and output flows associated with each product. Allocation of materials and energy was done on a mass basis for all products except for the facing, which was allocated based on product area. Allocation of transportation was based on either weight or volume, depending on which was found to greater restrict the amount of cargo. Glass cullet is assumed to enter the system burden-free in that burden associated with the production of virgin glass is not allocated to the fiberglass life cycle. Likewise, the system boundary was drawn to include landfilling of fiberglass at end-of-life (following the polluter pays principle), but exclude any credits from recovery.

Cut-off criteria For the inclusion of mass and energy flows are 1% of renewable primary resource (energy), 1% nonrenewable primary resource (energy) usage, 1% of the total mass input of that unit process, and 1% of environmental impacts. The total of neglected input flows per module does not exceed 5% of energy usage, mass, and environmental impacts. The only exception to these criteria is substances with hazardous and toxic properties, which must be listed even when the given process unit is under the cut-off criterion of 1% of the total mass. No known flows are deliberately excluded from this declaration.

# Scenarios and additional technical information

| PARAMETER                                                 | VALUE    | UNIT                 |
|-----------------------------------------------------------|----------|----------------------|
| Transport to the building site [A4]                       |          |                      |
| Vehicle type                                              | Truck    |                      |
| Average distance from Shelbyville to installation site    | 680      | mi                   |
| Capacity utilization by mass                              | 27       | %                    |
| Installation into the building [A5]                       |          |                      |
| Distance from installation site to disposal               | 100      | mi                   |
| Mass of paper packaging waste to disposal                 | 0.0225   | kg                   |
| Mass of plastic packaging waste to disposal               | .0519    | kg                   |
| Biogenic carbon contained in paper packaging              | 9.88E-03 | kg CO <sub>2</sub>   |
| GWP based in biogenic carbon content of paper packaging   | 2.72E-02 | kg CO <sub>2</sub> e |
| GWP based in biogenic carbon content of plastic packaging | 0        | kg CO <sub>2</sub> e |
| Disposal/reuse/recycling [C1-C4]                          |          |                      |
| Distance from installation site to disposal               | 100      | mi                   |

3.20

9.06E-03

kg

kg CO,

# Resource use, output and waste flows, and carbon emissions and removals for Akousti-Board Black™ per functional unit

Mass of product waste to disposal

Removals of biogenic carbon (excluding packaging)

| Parameter                                                              | Unit                    | A1-A3    | A4       | A5       | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1 | C2       | C3 | C4       | Total    |
|------------------------------------------------------------------------|-------------------------|----------|----------|----------|----|----|----|----|----|----|----|----|----------|----|----------|----------|
| Resource use indicat                                                   | Resource use indicators |          |          |          |    |    |    |    |    |    |    |    |          |    |          |          |
| Renewable primary energy used as energy carrier (fuel)                 | MJ, LHV                 | 7.61E+00 | 3.09E-01 | 5.01E-03 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 2.43E-02 | 0  | 2.12E-01 | 8.16E+00 |
| Renewable primary<br>resources with energy<br>content used as material | MJ, LHV                 | 2.19E-03 | 0        | 6.21E-07 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0        | 2.19E-03 |
| Total use of renewable primary resources with energy content           | MJ, LHV                 | 7.61E+00 | 3.09E-01 | 5.01E-03 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 2.43E-02 | 0  | 2.12E-01 | 8.16E+00 |
| Non-renewable primary<br>resources used as an energy<br>carrier (fuel) | MJ, LHV                 | 1.48E+02 | 1.27E+01 | 9.90E-02 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 9.96E-01 | 0  | 3.09E+00 | 1.65E+02 |
| Non-renewable primary resources with energy content used as material   | MJ, LHV                 | 1.16E-07 | 0        | 6.17E-11 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0        | 1.16E-07 |
| Total use of non-renewable primary resources with energy content       | MJ, LHV                 | 1.48E+02 | 1.27E+01 | 9.90E-02 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 9.96E-01 | 0  | 3.09E+00 | 1.65E+02 |
| Secondary materials                                                    | kg                      | 1.87E+00 | 0        | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0        | 1.87E+00 |
| Renewable secondary fuels                                              | MJ, LHV                 | 0        | 0        | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0        | 0        |
| Non-renewable secondary fuels                                          | MJ, LHV                 | 0        | 0        | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0        | 0        |
| Recovered energy                                                       | MJ, LHV                 | 0        | 0        | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0        | 0        |
| Use of net fresh water resources                                       | m3                      | 1.25E+03 | 3.46E+01 | 2.83E+00 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 2.72E+00 | 0  | 9.91E+01 | 1.38E+03 |
|                                                                        |                         |          |          |          |    |    |    |    |    |    |    |    |          |    |          |          |

# Output flows and waste category indicators

| Juiput nows and waste category indicators                                                |         |   |   |          |   |   |   |   |   |   |   |   |   |   |          |          |
|------------------------------------------------------------------------------------------|---------|---|---|----------|---|---|---|---|---|---|---|---|---|---|----------|----------|
| Hazardous waste disposed                                                                 | kg      | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0        |
| Non-hazardous waste disposed                                                             | kg      | 0 | 0 | 7.44E-02 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.20E+00 | 3.27E+00 |
| High-level radioactive waste, conditioned, to final repository                           | kg      | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0        |
| Intermediate- and low-level<br>radioactive waste,<br>conditioned, to final<br>repository | kg      | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0        |
| Components for re-use                                                                    | kg      | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0        |
| Materials for recycling                                                                  | kg      | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0        |
| Materials for energy recovery                                                            | kg      | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0        |
| Exported energy                                                                          | MJ, LHV | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0        |

| Carbon emissions and removals                                                                                     |                    |          |   |          |   |   |   |   |   |   |   |   |   |   |          |          |
|-------------------------------------------------------------------------------------------------------------------|--------------------|----------|---|----------|---|---|---|---|---|---|---|---|---|---|----------|----------|
| Biogenic Carbon Removal from Product                                                                              | kg CO <sub>2</sub> | 1.12E-01 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 1.12E-01 |
| Biogenic Carbon Emission from Product                                                                             | kg CO <sub>2</sub> | 1.26E-01 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9.06E-03 | 1.35E-01 |
| Biogenic Carbon Removal from Packaging                                                                            | kg CO <sub>2</sub> | 5.89E-03 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 5.89E-03 |
| Biogenic Carbon Emission from Packaging                                                                           | kg CO <sub>2</sub> | 0        | 0 | 9.88E-03 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 9.88E-03 |
| Biogenic Carbon Emission<br>from Combustion of Waste<br>from Renewable Sources<br>Used in Production<br>Processes | kg CO <sub>2</sub> | 0        | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0        |
| Calcination Carbon<br>Emissions                                                                                   | kg CO <sub>2</sub> | 0        | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0        |
| Carbonation Carbon<br>Removals                                                                                    | kg CO <sub>2</sub> | 0        | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0        |
| Carbon Emissions from<br>Combustion of Waste from<br>Non-Renewable Sources<br>used in Production<br>Processes     | kg CO <sub>2</sub> | 0        | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0        |

# TRACI v2.1 disaggregated results for Akousti-Board Black™ per functional unit

LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. These six impact categories required by the PCR are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development; however, the EPD users shall not use additional measures for comparative purposes. Impact categories which were not required by the PCR are included in part to allow for the calculation of millipoints using the SM2013 Methodology, but it should be noted that there are known limitations related to these impact categories due to their high degree of uncertainty. LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks.

| Impact category       | Unit                  | A1-A3    | A4       | A5       | B1 | B2 | В3 | В4 | B5 | В6 | В7 | C1 | C2       | C3 | C4       |
|-----------------------|-----------------------|----------|----------|----------|----|----|----|----|----|----|----|----|----------|----|----------|
| Acidification         | kg SO <sub>2</sub> eq | 2.59E-02 | 4.80E-03 | 3.43E-05 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 3.07E-04 | 0  | 9.00E-04 |
| Eutrophication        | kg <b>N</b> eq        | 2.12E-03 | 3.84E-04 | 8.53E-06 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 2.57E-05 | 0  | 4.57E-05 |
| Global warming        | kg SO <sub>2</sub> eq | 9.21E+00 | 8.97E-01 | 5.78E-02 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 7.05E-02 | 0  | 1.93E-01 |
| Ozone depletion       | kg CFC-11 eq          | 3.55E-09 | 6.19E-12 | 3.85E-11 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 4.86E-13 | 0  | 3.01E-12 |
| Smog                  | kg O <sub>3</sub> eq  | 3.07E-01 | 1.61E-01 | 7.20E-04 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1.01E-02 | 0  | 1.78E-02 |
| Fossil fuel depletion | MJ, LHV               | 1.02E+01 | 1.70E+00 | 1.23E-02 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1.34E-01 | 0  | 3.87E-01 |

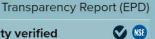
# Additional environmental information for Akousti-Board Black™ per functional unit

| Impact category     | Unit        | A1-A3    | A4       | A5       | B1 | B2 | В3 | B4 | B5 | В6 | B7 | C1 | C2       | C3 | C4       |
|---------------------|-------------|----------|----------|----------|----|----|----|----|----|----|----|----|----------|----|----------|
| Ecotoxicity         | CTUe        | 3.04E-01 | 1.12E-01 | 6.89E-04 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 8.79E-03 | 0  | 1.69E-02 |
| Carcinogenics       | CTUh        | 1.78E-09 | 4.75E-10 | 1.62E-11 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 3.73E-11 | 0  | 8.40E-10 |
| Non-carcinogenics   | CTUh        | 1.09E-07 | 3.53E-08 | 2.04E-09 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 2.78E-09 | 0  | 9.56E-08 |
| Respiratory effects | kg PM2.5 eq | 9.88E-03 | 2.50E-04 | 2.51E-05 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1.62E-05 | 0  | 6.47E-04 |

The product does not contain substances that are identified as hazardous according to standards or regulations of the Resource Conservation and Recovery Act (RCRA), Subtitle C, nor does it (or its associated processes) release dangerous, regulated substances that affect health and environment, including indoor air emissions, gamma or ionizing radiation emissions, or chemicals released to the air or leached to water and soil.



# SM Transparency Report (EPD)™


**VERIFICATION** 

LCA

3rd party reviewed

**⊘** NSI

3rd party verified



Validity: 2018/12/03 - 2023/12/03 MAN - 20181203 - 002

This declaration was independently verified by NSF to ISO 21930:2017, EN 15804, the UL Environment PCR, and ISO 14025:2006.

**NSF** International P.O Box 130140 789 N.Dixboro Road Ann Arbor, MI 48105, USA 734 769 8010



**SUMMARY** 

Reference PCR

Regions; system boundaries

North America; Cradle to grave

Functional unit / reference service life: 1 m<sup>2</sup> of installed insulation w/packaging;

thickness that gives an avg thermal resistance of RSI = 1 m<sup>2</sup>·K/W over 75 years.

LCIA methodology: TRACI 2.1 LCA software; LCI database

GaBi 7; GaBi 2017

LCA conducted by: Sustainable Minds

Public LCA: Knauf and Manson Products

**Manson Insutation** One Knauf Drive Shelbyville, IN 46176 317 398 4434